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DESIGN OF A DATA-DRIVEN DECISION SUPPORT SYSTEM FOR
COMBATING THE SPREAD OF ANTIBIOTIC RESISTANCE

SUMMARY

This study centers on the creation of a decision support system aimed at fostering the
formulation of data-driven, sustainable health policies in the combat against antibiotic
resistance, an escalating threat to global public health. The proposed design seeks to
furnish health decision-makers with a comprehensive perspective by amalgamating
health data from various sources, encompassing antibiotic usage statistics, resistance
rates, patient profiles, and genomic information.

The system's design is based on a multi-layered methodological structure. The first
stage involved defining the system's scope, its main stakeholders and their needs,
constraints and performance metrics. Following this, 13 different policy scenarios
were determined based on literature reviews and expert opinions. These scenarios
include risk-based antibiotic prescription, a usage model based on the WHO's AWaRe
classification, personalised information support systems, machine learning-supported
prescribing, and genomic data-driven antibiotic selection.

Each policy proposal has been structured in a way that is suitable for modelling within
the system using agent-based simulations (e.g. the SIER model) and machine learning
algorithms. Although it has not yet been implemented, the design developed has been
conceived in such a way as to enable each policy to be tested under different
conditions, the results to be analysed comparatively, and proactive recommendations
to be made to decision-makers. The data sets to be used in this context include national
resistance surveillance data, patient and prescription information, antibiogram results,
clinical and demographic data, and genome sequences.

The architecture of the developed system has been designed based on principles such
as a user-friendly interface, modular structure, and easy integration with different
health systems. In addition, compliance with data privacy and ethical standards such
as KVKK, GDPR, and HIPAA has been ensured to safeguard the security of personal
health data. The current design process is creating a robust, flexible, and scalable
infrastructure for future applications. In this regard, the system has the potential to be
used not only in the fight against antibiotic resistance but also against similar public
health threats.
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ANTIBIYOTIiK DIRENCININ YAYILMASIYLA MUCADELE ICIN VERI
ODAKLI KARAR DESTEK SiSTEMININ TASARIMI

OZET

Bu ¢aligma, diinya genelinde giderek biiyiiyen bir halk saglig: tehdidi olan antibiyotik
direnciyle miicadelede, veri temelli ve siirdiiriilebilir saglik politikalarinin
gelistirilmesini desteklemek amaciyla bir karar destek sistemi tasarimini ele
almaktadir. Bu baglamda, Onerilen sistem; antibiyotik kullanim verileri, direng
oranlari, hasta profilleri ve genomik bilgiler gibi ¢ok kaynakli saglik verilerini entegre
ederek, saglik karar wvericilerine daha biitiinciil bir bakis agis1 sunmay1
hedeflemektedir.

Sistem tasarimi, ¢ok katmanli bir metodolojik yapi iizerine insa edilmistir. Ik asamada
sistemin smirlari, ana paydaslar, ihtiyaclari, kisitlart ve performans Olgiitleri
tanimlanmistir. Bunu takiben, literatiir taramalar1 ve uzman goriisleri dogrultusunda
13 farkli politika senaryosu belirlenmistir. Bu senaryolar arasinda risk bazli antibiyotik
regetelendirme, WHO’nun AWaRe smiflamasina dayali kullanim modeli,
kisisellestirilmis bilgi destek sistemleri, makine 6grenmesi destekli recetelendirme,
genomik veriye dayali antibiyotik se¢imi gibi teknolojik yaklasimlarin yani sira;
antibiyotik abonelik modeli, katki pay1 bazli finansal sistemler ve geri 6deme esash
ekonomik modeller gibi yenilik¢i politikalar da yer almaktadir.

Her bir politika Onerisi, ajan tabanl simiilasyonlar (6rnegin SIER modeli) ve makine
Ogrenmesi algoritmalar1 ile sistem igerisinde modellenmeye uygun bigimde
yapilandirilmistir. Heniiz uygulama asamasma gecilmemis olmakla birlikte,
gelistirilen tasarim; her politikanin farkli kosullarda test edilmesine, sonuglarinin
karsilagtirmali olarak analiz edilmesine ve karar vericilere proaktif Oneriler
sunulmasina olanak taniyacak sekilde kurgulanmistir. Bu ¢ercevede kullanilacak veri
setleri arasinda ulusal diren¢ gozetim verileri, hasta ve regete bilgileri, antibiogram
sonuglari, klinik ve demografik veriler ile genom dizilimleri yer almaktadir.

Gelistirilen sistemin mimarisi, kullanic1 dostu arayiiz, modiiler yap1 ve farkli saglik
sistemlerine kolay entegrasyon gibi prensiplerle tasarlanmigtir. Ayrica, kisisel saglik
verilerinin giivenligini saglamak adina KVKK, GDPR ve HIPAA gibi veri gizliligi ve
etik standartlara uyum gozetilmistir. Mevcut tasarim siireci, ileride yapilacak
uygulamalar i¢in saglam, esnek ve Olgeklenebilir bir altyapi olusturmaktadir. Bu
yOniiyle, sistem yalnizca antibiyotik direnciyle degil, benzer halk saglig tehditleriyle
miicadelede de kullanilabilecek potansiyele sahiptir
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1. INTRODUCTION

Antibiotics have played an important role in the treatment of bacterial infections since
their development. However, in recent years, the misuse and unnecessary use of
antibiotics has started to turn this success into a threat. This threat poses a risk to both
individual treatment and public health on a global scale. According to the World
Health Organization, 10 million people are expected to die by 2050 due to antibiotic
resistance. This shows the seriousness of the problem and the need for solutions to the
problem. Resistant infections not only prolong the duration of treatment, but also lead
to significant increases in healthcare costs. This shows that AMR (antimicrobial
resistance) is not only a medical issue, but also an economic, social and environmental
problem. In this engineering design project, our aim is to use our data-driven decision-
making system to analyze the spread of antibiotic resistance, predict future risks and
develop engineering-based policies in a multidisciplinary way. The system aims to
provide effective, sustainable and proactive solutions to health authorities, hospitals

and clinical decision makers.

1.1 Methods To Be Covered By The Project

The system to be developed under this project has a multi-component structure and
includes various methods and technologies in an integrated manner. Firstly, a
comprehensive data collection and management infrastructure will be established to
securely collect, clean and make available for analysis multidimensional health data
such as historical antibiotic usage records, resistance rates, infection types and patient
profiles. Using these data, models will be developed to predict antibiotic resistance
trends using machine learning algorithms (e.g. Random Forest, LSTM). In addition,
the impact of different policy scenarios will be analysed by modelling the dynamics of
the spread of infections in the community with agent-based simulation methods that
take into account the interaction between individuals. The outputs of these analyses
will be included in an optimisation process in which intervention strategies will be

compared in terms of cost and effectiveness, and the most appropriate implementation



options will be presented to decision-makers. Finally, in order for healthcare
institutions and public authorities to use the system effectively, a user-friendly decision
support interface will be designed to provide access to both visual analyses of

historical data and future policy recommendations.

Compared to the approaches used in existing researches to produce and prevent
strategies to combat antibiotic resistance, the system to be designed aims to provide a
decision support system that will make health policies more innovative, effective and

sustainable by using multiple industrial engineering techniqu



2. SYSTEM ANALYSIS

2.1 System Definition

This system is a data-driven decision support system designed to develop effective
policies to combat antibiotic resistance, prevent its spread and optimize the use of
antibiotics in health systems. The most important feature of this system is to provide
decision support with a holistic and comprehensive system perspective and
engineering design in the problem of antibiotic resistance, which has many parameters
and it is difficult to reveal effective combating methods from a single perspective. The
system aims to predict the regional trends of antibiotic resistance, model transmission
dynamics and optimize combat strategies in terms of cost and success with the outputs

from these studies.

2.1.1 System limits

The scope of the system is limited to the management of antibiotic use within health
systems and the monitoring of antibiotic resistance. The system is to be designed for
deployment within hospitals, clinics and public health organizations, with a general
function as a decision support tool for health authorities and hospital managers. The
system's recommendations will be based on interventions at this level only; they will
not directly influence individual patient decisions. Nevertheless, it will provide a
higher dimensional perspective, which may influence individual orientation towards
antibiotic use. The policies proffered by the system may not be applicable to the health
systems of every country, which are subject to regulatory and bureaucratic barriers.

This may have a bearing on the decisions and practices of policy makers.

2.1.2 System stakeholders

Health authorities represent the most significant stakeholders within the system. The
ability to visually and comprehensively observe and monitor the effects of antibiotic
resistance, a global problem impacting all aspects of public health, the spread trend,

and the utilization of antibiotics, will serve as a pivotal guide in every decision made.



In this context, more precise measures can be implemented, with the relevant
determinations to be made within the scope of the hospital or health institution, with
the possibility of further development in the future. Countries and regions that
currently do not possess or maintain data on this subject will be able to integrate into
the system with their own data, provided that said data is stored in the format utilised
by the system. This flexibility will provide health authorities with new ideas to tackle
the problem and opportunities for both local and global benchmarking. Since hospitals
and clinics are health authorities in small regions, they will be able to see all these
benefits as well. Moreover, if the hospital integrates its patients' data into the system,
once the necessary personal rights are defined, it can see the state of resistance in its
small ecosystem and use the system as an early warning mechanism. Hospitals can
develop general policies as well as hospital-specific prevention and intervention
policies. Doctors and healthcare professionals will be able to make antibiotic choices
through this system, and public health experts and epidemiologists will be able to
analyze the effects of the spread of antibiotic use throughout the population and
develop health policies accordingly. Pharmacists and the pharmaceutical industry will
be able to contribute to the development of strategies to combat antibiotic resistance

by providing data on drug use and antibiotic prescriptions.
2.1.3 Possible opportunities

2.1.3.1 Data integration and detailed health document sharing

The system can monitor the spread of antibiotic resistance more comprehensively and
in specific breakdowns (age, region, disease history, etc.) by ensuring regular
collection and integration of data from different health institutions such as hospitals,
clinics, public health organizations. This allows for more data sharing on antibiotic use
and resistance and can create a strong collaborative environment between health
systems. This can lead to more efficient and tailored decision-making across the
healthcare sector. In addition, disease spread and resistance rates in different regions
can be monitored more accurately. National data sharing can also provide an important

opportunity to understand the societal impact of antibiotics and to tailor policies.



2.1.3.2 Policy development and improvement

Health authorities can holistically view and test their current policies and the steps they
intend to implement. In addition, with the diversification of data sources, policies in
different countries can be adapted and supported each other. This, in turn, can create a
global struggle environment and bring this problem, which is defined as a silent
pandemic, under control. In addition, long-term solutions can be found by testing the
effectiveness of strategies such as education programmes and antibiotic sales audits
with the data of the system. Thus, decision support can be obtained from the system

for continuous improvement of health policies.

2.1.3.3 Early intervention and prevention methods

The system monitors antibiotic resistance both regionally and in cases where it is
customised, it can turn into specific alarm mechanisms. Here, by monitoring the spread
of antibiotic resistance on the basis of hospitals, districts, provinces and even countries,
measures can be taken by early detection of threats to public health when above certain
threshold values. An important step can be taken to protect public health with early
detection and treatment. Accurate simulation of infection dynamics and data-based
early warning systems enable health professionals to intervene proactively and
effectively. Thanks to the early detection of resistant infections, the spread of these

infections can be prevented.
2.1.4 Possible threats in the environment:

2.1.4.1 Data security and privacy

Health data are data that we can distinguish individuals and are in the sensitive data
category. For this reason, if non-open source data is used, it is necessary to clean the
data and use the necessary additional hiding methods. If the measures in this regard
are not clearly stated, there may be mistrust in the system and problems may arise in
data sharing. In addition, mismanaged data security can jeopardise patients' personal

information. A serious threat here is data leaks, hacking attacks and misuse of personal



data. These problems can cause serious reputational losses and legal problems.
Healthcare organisations may be concerned about data security and the widespread use

of the system may be prevented.

2.1.4.2 Data inadequacy and quality problems

The amount of data required by the system is large for an accurate analysis. However,
it can be difficult to find institutions or organisations willing to share health data,
especially information whose existence creates a negative image, such as resistance.
In addition, in some regions, data on antibiotic resistance or drug use are not available
in a good quality and complete format. Incomplete data and low quality data may lead
to wrong decisions and reduce the effectiveness of intervention strategies. The
important thing here is to use data sources in a number and format suitable for
generalisations to represent the region being studied and to process them correctly. In
the next system development steps, this pilot application can be transferred to local

organisations such as entire regions, countries or hospitals.

2.1.4.3 Policy applicability and legal barriers

All the policies we will test in our system are within the bounds of the law. This
requires us to narrow our scope and sacrifice certain benefits. It is important to get
them right and, if not, inaccurate recommendations may result, reducing the credibility
of the system. Due to the obstacles encountered in implementation, effective
intervention may not be achieved and the effectiveness of the system may be

misinterpreted.

2.1.4.4 Lack of technological infrastructure

Problems such as lack of technological infrastructure and internet access may prevent
widespread use of the system, especially in developing countries or rural areas. It may
make data transfer and real-time monitoring difficult and limit the overall success of
the system. In addition, since the health systems used in each country are different,

there may be problems in integrating the system into these platforms.



2.1.5 Important elements of the system

2.1.5.1 Data collection and management module

The data of the system consists of open-source data shared from health systems,
institutions such as WHO, infection and antibiotic usage data, AMR clinical microbial
research data and AMR-induced death data. Obtaining, cleaning and formatting all
these data into a format that can be given to the model and transforming the data

without violating personal information constitute the data management module.

2.1.5.2 Machine learning and data analytics

With the collected data, resistance trends and predictions are created with machine
learning algorithms. These data are used to predict the future effects of antibiotic

resistance.

2.1.5.3 Simulation and scenario modelling

Multi-agent simulations aim to model the transmission dynamics and resistance
development of resistant bacteria, so that policies can be tested in areas and at speeds

that would be difficult to observe in reality.

2.1.5.4 Policy optimization:

In addition to different antibiotic use strategies, policies that are currently used in the
world and considered useful, new solutions and measures can be tested with the

information learned from the system and the response of the system can be measured.

2.1.5.5 User interface and decision support module:

Enables healthcare professionals to track antibiotic resistance, make the right treatment
decisions and optimize antibiotic use. The interface provides an effective tool for long-
term policy development, data-driven strategies and effective intervention decisions.
Hospital administrators and health authorities can use this interface for data-driven,

inclusive and proactive solutions.



2.1.6 System constants

2.1.6.1 Limit values for antibiotic resistance

Certain levels of resistance to antibiotics are known as fixed. These are the limit values
that determine how much resistance resistant bacteria show to which antibiotics. These
constants define the effectiveness of antibiotics and what levels of resistance are
clinically relevant. When deciding whether the antibiotic is effective, it is checked

whether the level of resistance exceeds this constant value.

2.1.6.2 Data standards and forms

International health informatics standards such as HL7 and FHIR are considered fixed.
Data should be collected in these formats and integrated into the system. These
constants are necessary for the system to work in harmony with different health

information systems.

2.1.6.3 Antibiotic and bacteria relationship

It has been determined which antibiotic is resistant to which bacteria. These constants
will affect the antibiotic selection and antibiotic dosage to be applied while setting up

the system.

2.1.6.4 Antibiotic treatment periods and instructions for use

These are the general standards for the use of antibiotics determined by health
institutions. The system works based on fixed standards that determine which
antibiotic will be used against which bacteria and under which conditions. Antibiotic
treatment times are set as a standard in a way to get the most efficiency, and the policies
that our system will recommend should be determined by considering these. There are
also restrictions and limits on the use of certain antibiotics. Antibiotics are also
categorised and some of them can be restricted except for infections with a high risk

of developing resistance, and these can be set as constants for the system.

2.1.7 Parameters



2.1.7.1 Resistance rate

Resistance rates refer to the rate of development of resistance to each antibiotic. This
is a critical parameter used when analyzing the impact of antibiotics.

2.1.7.2 Infection rate

It is the parameter that shows the rate of spread of resistant bacteria. This rate varies
depending on factors such as community structure and access to health services.
2.1.7.3 Intensity of antibiotic use

The intensity, duration and consumption amount of antibiotic use in the region where
the system will be implemented.

2.1.7.4 Bacterial Species and Prevalence:

The prevalence of bacterial species is the distribution of bacterial species analyzed by
the system, and the prevalence of these bacteria in hospitals depends on this
parameter.

2.1.7.5 Policy implement ability

This is a measure of the applicability of the policies proposed by the system in the
sector and in society. This parameter is used to analyze the effectiveness of the system.

2.1.8 Performance indicators

2.1.8.1 Spread prediction accuracy

Measures how well the system's predictions match actual resistance rates.

2.1.8.2 Policy effectiveness

The reduction in resistance rates can be measured by indicators such as the change in

the rate of spread of resistant infections.



2.1.8.3 User satisfaction

The parameters of this indicator are user-friendliness of the interface, short training
times and the decision support system producing accurate results. The trust of patients
and doctors in the system can be evaluated within the scope of user satisfaction.

2.1.8.4 Process Time Efficiency

The indicator shows how well the optimization is done regarding the calculation time.

2.1.8.5 Compatibility Rate of Simulation Results with Real Data

It is to measure how compatible the simulation results are with real data.
2.2 Stakeholders of The System

2.2.1 Hospitals and health institutions

They are the main data sources and application areas of the system. They will directly
use the system to develop antibiotic use policies, optimize infection control strategies

and manage health resources more efficiently.

2.2.2 Health professionals (physicians, clinical teams)

This is another main stakeholder group that will directly benefit from the system
outputs. It will be possible to make more accurate and faster decisions with antibiotic
treatment strategies recommended in line with clinical data, patient history and
antibiogram results. Optimizing the decision-making processes of these stakeholders
will ease the psychological burden of their work. Since they can directly observe the

effects in the system, they will increase optimization with feedback.

2.2.3 Public health authorities and the ministry of health

These stakeholders, who are responsible for formulating national policies to combat
antibiotic resistance, will be able to develop more proactive and science-based

strategies through regional resistance analyses and intervention simulations provided
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by the system. A beneficial impact on public health will reduce costs and increase

public trust in health systems. This directly serves the objectives of decision-makers.

2.2.4 Epidemiologists and academics

The simulation and modeling modules within the system will provide valuable inputs
for academic analysis and scientific studies, and will constitute an important resource,
especially in terms of spread modeling. Since the system serves an active problem, it
can be reworked with changing conditions. This system can be adapted for different

pandemics when desired.

2.2.5 Society and patients (indirect stakeholders)

The system will provide access to safer and more effective healthcare services, shorten
treatment processes and reduce the burden on the healthcare system, thanks to the
correct use of antibiotics and the reduction of resistant infections. This will reduce the

loss of time and both psychological and physiological wear and tear faced by patients.

2.2.6 Pharmacists and the pharmaceutical industry

The pharmaceutical industry is a stakeholder that can both affect and be affected by
the system. The system will be able to provide much more comprehensive results when
drug sales and utilization data are added to the system from pharmaceutical companies.
In addition, in line with the recommendations and outputs of the system, it can support

antibiotic development studies and clinical research in the pharmaceutical industry.

2.2.7 Purpose of the study and contributions to stakeholders

The main objective of this study for stakeholders is to design a data-driven decision
support system that will enable early detection of antibiotic resistance spread, test
intervention strategies and support decisions. The system offers not only an analysis
of the current situation, but also the possibility to predict future risks and optimize
alternative scenarios. The main benefits to stakeholders include the ability of clinical
staff to make safer and more accurate treatment decisions, hospitals to reduce costs by

optimizing antibiotic use, and public authorities to develop more effective public
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health policies. At the society level, there will be indirect but important public health
improvements, such as increased treatment success, reduced rates of resistant

infections and improved quality of access to healthcare services.

2.2.8 Success criteria of the designed system

The success of the designed system will be evaluated according to both technical and
operational performance criteria. Technical success criteria include the predictions of
the machine learning models are in a pattern compatible with historical data, the
scenario reliability and realism of the simulation module, and the cost/effectiveness
ratios of the optimization outputs. In addition, the computational and time efficiency
of these models and algorithms will be measured and will be an important component
in the success of the system. Operational success will be measured by user satisfaction,
applicability of the system, level of contribution to decision makers and tangible
improvements achieved in the health system. In addition, the level of integration of the
system with existing health information systems and its active use by different

stakeholders can also be evaluated among the success criteria.

2.2.9 Product and service description to be designed

The system will be designed in such a way that hospitals can access it from their
computers, integrated into their health systems. There will be an interface where they
can view diffusion maps, statistics and dashboards to facilitate the decision-making
process and monitor diffusion. Algorithms that provide recommendations to determine
antibiotic use on a regional group basis will be integrated into the system. The results
of each policy will be visible in the system and its effects will be analyzed in detail.
Due to its flexible, modular and expandable structure, clinical researchers will be able

to easily use the system in their research.
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2.3 System Requirements

The growing threat of antibiotic resistance on public health and health systems
emphasizes the need for more analytical, predictive and systematic tools for decision-

making.

2.3.1 Needs to be met

e Data-driven clinical decision guidance: Supporting physicians to make the
right choice of antibiotics.

o Effective planning and evaluation of health policies: Enabling public
authorities to plan interventions based on resistance trends.

e Optimizing resource allocation and infection control: Ensure rational use of
antibiotics in hospitals.

e Develop early warning mechanisms: Detect increasing trends of resistant

infections in advance and intervene in a timely manner.

2.3.2 Design requirements

o Data analysis capacity: Accurate processing and modeling of large and multi-
dimensional health data.

o Forecasting capability: Future predictions of resistance levels and
transmission risks.

e Simulation module: A parametric and flexible model for testing intervention
scenarios.

e Optimization component: Comparison of intervention strategies in terms of
cost, effectiveness and feasibility.

o User-friendly interface: An intuitive, understandable and interactive system
experience for clinical users and decision makers.

e Privacy and ethical compliance: Anonymization and processing of patient

data and compliance with relevant legal regulations.
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In order for the designed system to work effectively and sustainably, some basic
requirements, both technical and user-oriented, need to be met. First, the success of
the system depends on its ability to reliably aggregate and manage very large datasets
from different sources in the healthcare domain, which often contain irregular and
personal data. Therefore, a strong technical infrastructure is needed. The system is
expected to bring together different types of data and make them analyzable in the
same module. In the prediction module, machine learning algorithms that can predict
regional and temporal trends of antibiotic resistance based on historical data should be
run. Accordingly, the system should have a structure where different machine learning
methods can be tested. Future prediction based on past data will also be made. For this
purpose, an agent-based simulation infrastructure to model transmission dynamics will
be one of the important components of the system. Above all, considering that the
system will work with patient data, utmost care must be taken in terms of data security.
Therefore, it should be configured in accordance with both local (KVKK) and
international (GDPR, HIPAA) data protection standards.

2.4 Constraints Directing Design

Full compliance with ethical and legal regulations on the processing, storage and
analysis of patient data is expected. Accordingly, anonymization techniques and
access restrictions should be integrated into the system design. It is also anticipated
that problems such as incomplete records, lack of standards and access restrictions
may exist in health data. It should be taken into account that this may affect the
accuracy of the prediction algorithms. From a technical point of view, since running
simulation and optimization modules may require high computational power, it is
recommended that the algorithms to be developed should be designed considering

computational efficiency.

Considering that end users may have limited technical background knowledge, the
interface should be designed to be easy to understand and usable with little training.

In addition, it is aimed to create a parametric and modular software architecture for the
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model to be adaptable in different geographical regions or health systems. In order for
the outputs of the system to be developed to be integrated with health information
systems used in different countries (e.g. EHR - Electronic Health Records), it is
important to comply with international health informatics standards (e.g. HL7, FHIR).
Finally, it should be recognized as a fundamental requirement that system outputs
should not generate false alarms and should be disclosable, auditable and transparent

in order to avoid the risk of misdirection.

2.5 Professional standards to which the design is related

Professional standards and legal regulations that are directly related to the design
project are listed below. These standards specify requirements in critical areas such as

system security, user privacy and data management.

2.5.1 HIPAA (health insurance portability and accountability act)

HIPAA, a regulation of the United States of America, is the reference for the protection
of patient data. This law aims to ensure the security and privacy of individual health
information. If the system works with personal data, it must be configured in

compliance with HIPAA.

2.5.2 GDPR (general data protection regulation)

The General Data Protection Regulation (GDPR) set by the European Union
establishes the legal framework for the processing and storage of personal data. This
regulation sets standards that must be complied with in all processes related to the

protection of personal data and the privacy of individuals.

2.5.3 ISO/IEC 27001 - Information security management system standard
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ISO/IEC 27001 is a globally recognized standard for ensuring information security.
This standard specifies the necessary management procedures to ensure the security of

all data flows.

2.5.4 ISO 9241 - Human-Computer interaction standard

ISO 9241 is a standard for human-computer interaction and ergonomic interface
design. According to this standard, an ergonomic and interactive interface should be

designed so that users can easily use the system.

2.5.5 IEEE Code of ethics

The IEEE Code of Ethics includes principles such as engineering ethics, benefiting
society, reliability, integrity and user safety. This code of ethics will be considered

during the system development process.
2.5.6 WHO - Global Action Plan to Combat Antimicrobial Resistance

The World Health Organization's (WHO) Global Plan of Action against antibiotic
resistance will be used as a reference for the system to develop policies and provide

recommendations to combat antibiotic resistance.

2.5.7 Personal Data Protection Authority (KVKK)

KVKK is a law that includes legal regulations for the protection of personal data in
Turkey. This law provides the necessary measures for the protection and privacy of

individuals' personal data.
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3. LITERATURE REVIEW

3.1 What is an Antibiotic?

“An antibiotic is a chemical substance, produced by micro-organisms, which has the
capacity to inhibit the growth of and even to destroy bacteria and other micro-
organisms.” (Waksman, 1947, p. 565). By its very nature, an antibiotic affects some
micro-organisms and others not at all or in a limited way. Each antibiotic is therefore

characterized by a unique antimicrobial spectrum.

3.2 What is Antibiotic Resistance?

Antibiotic resistance occurs when a bacterium develops the ability to resist an
antibiotic that is expected to harm it. Antibiotics can no longer kill the bacteria or stop
their growth. This leads to untreatable infections and increases the risk of death.
Antibiotic resistance can occur in three forms:
e Intrinsic (Natural) Resistance: This is when some bacteria are naturally
resistant to some antibiotics.
e Resistance due to environmental conditions: Although antibiotics seem to be
effective in the clinical setting, they may not be effective depending on
environmental factors in the human body. Some of these factors include low
oxygen, pH change or inability to cross the blood-brain barrier.
e Acquired Resistance: This is currently the most common form of resistance
that can be fought. Bacteria acquire resistance through DNA mutations or by
acquiring genes from outside. Acquired resistance mechanisms are also divided
into four groups. These are preventing the drug from working by changing its
target, inactivating the drug by degrading it with enzymes, preventing the entry of
the drug into cells by reducing membrane permeability, and inactivating the drug

by overproduction of target structures.

Antibiotic resistance is usually treated with drugs that are more expensive, more toxic

and less accessible than antibiotics normally prescribed. This leads to an increase in
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side effects and makes treatment longer and more costly. Despite all this, in some

cases, none of the new drugs work.

3.3 Causes of Antibiotic Resistance

There are many reasons for antibiotic resistance. These include uncontrolled drug use,
which is frequently mentioned in articles, financial-oriented drug policies of the
pharmaceutical industry and widespread use of antibiotics in the food industry. In
addition, unconscious and non-prescription use of antibiotics also causes antibiotic
resistance to spread rapidly. It is also known that resistance rates are higher especially
in areas where antibiotic use is high, such as hospitals. Therefore, hospitals are one of
the most critical components in system design. Not only medical measures but also
awareness raising and measures in the food sector play a critical role in combating
antibiotic resistance. This is the reason why a holistic perspective, data-driven

approach, multidisciplinary and sustainable practices are included in system design.

3.4 Why Combating Antibiotic Resistance is Critical?

In September 2016, heads of state and government gathered at the UN in New York
adopted a groundbreaking Political Declaration on Antimicrobial Resistance (AMR),
recognizing that antibiotic resistance is the “greatest and most urgent global risk” and
that many achievements of the 20th century, particularly the reduction of morbidity
and mortality from infectious diseases, are seriously threatened by AMR (Khor, 2018).
In addition, recent studies and extensive research emphasize that antibiotic resistance
is not only a medical issue but also an economic, social and environmental problem. It
is also explained that this resistance has become the biggest public health threat
worldwide, as it is accelerating day by day and solutions are difficult. As Khor (2018)
states in his book, especially developing countries have become more susceptible to
this crisis due to the lack of regulatory structure, uncontrolled prescription systems and
inadequate public health investments.

Bacterial AMR is estimated to be directly responsible for 1.27 million global deaths
and contributed to 4.95 million deaths in 2019, according to the World Health
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Organization. Furthermore, the World Bank estimates that AMR could lead to
additional healthcare costs of US€1 trillion by 2050 and gross domestic product (GDP)
losses of US€I trillion to US€3.4 trillion per year by 2030. This shows that the
economic and social dimensions of antibiotic resistance can also be very severe and
the importance of combating it in these areas. The cost- and feasibility-optimized
control and prevention policies in system design also serve to solve this important
problem.
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Figure 3.4.1 Projected global trade loss under high-AMR scenarios. Adapted from Drug-resistant
infections: A threat to our economic future (World Bank, 2017).

As seen in the graph, it shows the long-term impact of antimicrobial resistance (AMR)
on global trade. In the high AMR scenario, world exports decline by more than 3% by
2050, while in the low AMR scenario the decline is limited. This shows that fighting

antibiotic resistance is important for both health and the economy.

The effect of AMR on livestock production is even more important. In low-income
countries, livestock production is expected to drop by as much as 11%. This will put

millions of people's lives at risk, as they depend on livestock for their livelihoods.
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(World Bank, 2017)
The OECD's 2023 report also says that resistant infections kill about 79,000 people
each year in OECD and EU/EEA countries. This number is 2.4 times the total number
of deaths from tuberculosis, influenza, and HIV/AIDS in 2020. The majority of these

deaths are caused by resistant infections acquired during healthcare and account for

60% of all AMR-related deaths.

The treatment of resistant infections results in an additional annual cost of US€28.9
billion (adjusted for purchasing power parity) to healthcare systems. In particular, the
additional 32.5 million days spent in hospital each year due to these infections is
equivalent to a country (such as Spain) having its entire acute bed capacity fully

occupied for a year.

The impact on the workforce is also significant. AMR causes annual losses in
workforce participation and productivity amounting to 36.9 billion US dollars. This is
roughly equivalent to one-fifth of Portugal's gross domestic product in 2020. On
average, 734,000 full-time equivalent jobs are lost each year, 84% of which are due to

reduced labor force participation. (OECD, 2023)
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Figure 3.4.2 Annual job losses, absenteeism and presenteeism up to 2050.

The “replacement” and “elimination” scenarios shown in the figure represent different

outcomes in the fight against antimicrobial resistance (AMR). The replacement

3.5 Smart Antibiotic Use in Combating Antibiotic Resistance

One of the most important elements of combating antibiotic resistance is rational drug

use. Health authorities use policies such as prohibition of over-the-counter drug sales,
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national action plans, awareness-raising guides for healthcare professionals, setting up
antibiotic committees within hospitals and public education campaigns for rational

drug use.
3.6 Key Data for Antibiotic Resistance Modeling

Some of the data required for the detection and control of antibiotic resistance that can
be used in system design and modules were identified through literature reviews.

These are:

e Medical data: Antibiogram data (bacterial species, antibiotics, sensitivity

status), patient data, clinical data

o Environmental and Social Data: Regional resistance rates and social factors,
data on food production and consumption, current laws and regulations on

antibiotic use.
3.7 Trend Forecasting of the Spread of Antibiotic Resistance

Studies on predicting antibiotic resistance have gained significant momentum,
especially in recent years, thanks to the opportunities offered by machine learning
techniques. Many studies in the literature show that highly accurate prediction models
can be developed using both clinical and genetic data (e.g. whole genome sequencing,
k-mer profiles). In this way, antimicrobial resistance trends can be predicted in a way
that not only analyzes the current situation but also contributes to the formulation of

proactive health policies for the future.

Wang et al. (2023) stated that the models they made for Acinetobacter baumannii
isolates had an average prediction accuracy of 94-97% for different antibiotics. In this
research, k-mer-based feature extraction was integrated with algorithms like Random
Forest, yielding results in a shorter timeframe than conventional resistance tests. In
another study, Ren et al. (2022) evaluated four different algorithms developed for E.

coli isolates and found that Random Forest and deep learning methods were generally
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more successful. In addition, the fact that these models can work without depending
only on known resistance genes shows the potential to reveal previously unidentified

resistance mechanisms.

3.8 Use of Markov-Type Cohort Model and Dynamic Compartmental Model

In the health literature, simulation-based approaches are frequently used to assess the
long-term effects of infectious disease policies under conditions of uncertainty. In this
project, we adopted a hybrid modeling framework that combines a Markov-type cohort
model with a Dynamic Compartment Model (DCM) to comprehensively evaluate
antimicrobial resistance (AMR) policies, allowing us to observe two different model
outcomes. This dual approach allows the model to capture both population-level
epidemiological transitions and the fundamental biological mechanisms driving

resistance dynamics.

The Markov-type cohort model represents long-term transitions between health states
over separate annual cycles. Using incidence rates, resistance rates, mortality rates,
and annual cost and benefit values, it derives aggregate outcomes such as total number
of infections, number of deaths, annual QALYSs, and total costs under each policy
scenario. This model is compatible with standard health economics evaluation
practices and facilitates comparisons between countries through adaptable AMR
burden categories. The Markov approach is particularly suitable for long-term cost-
effectiveness analysis and clearly quantifies increasing costs, increasing QALY's, and

ICER values for policy decisions.

In contrast, the Dynamic Compartment Model (DCM) captures the biological and
epidemiological mechanisms underlying AMR transmission using a continuous-time
differential equation system. The model simulates colonization, progression of
infection, resistance selection, recovery, and mortality on a daily time scale, producing
mechanical trajectories for susceptible and resistant infections. Unlike Markov models
that summarize annual transitions, DCM also reflects short-term fluctuations in

pathogen dynamics and antibiotic-related selection pressure. DCM outputs can also be
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converted into economic metrics; these calculations rely on a separate set of state-

based benefit and cost parameters specific to the dynamic model.

The coexistence of these two independent models enhances the analytical flexibility
of the study and allows decision-makers to evaluate AMR policies using a biologically

grounded dynamic transmission model.
3.9 Industrial engineering techniques used in the design

3.9.1 Operations research (OR)

Operations Research (OR) is critical in addressing multifaceted problems such as
antibiotic resistance and in the development of decision support systems. Since factors
such as antibiotic use, resistance development and health policies are interlinked,
effective planning becomes important. Therefore, cost and effectiveness analysis
becomes an important tool to guide health authorities towards optimal antibiotic
strategies. OR provides mathematical models that facilitate the efficient allocation of
system resources. These models provide assessments to identify strategies that not only
reduce antibiotic use but also reduce resistance rates. When dealing with complex and
branching problems such as antibiotic resistance, OR techniques offer a significant
advantage in identifying optimal solutions from both an economic and public health
perspective. OR can thus be used to improve policy optimization and resource

management.

3.9.2 System simulation

Systems simulation is used to analyse transmission dynamics and assess the possible
outcomes of many different intervention scenarios. Due to the time-varying,
multidimensional and complex nature of antibiotic resistance, simulation enables
understanding the effects of policy changes and the spread of resistant bacteria over
time. This approach allows stakeholders to observe and test the possible outcomes of

planned interventions before they are implemented. Furthermore, simulation helps to
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understand the interaction between the behaviour of individuals and antibiotic

resistance, providing a valuable asset for predictive modelling and strategic planning.

3.9.3 Machine learning

Machine learning and data analytics are essential components of the design. These
models can generate predictive insights into antibiotic resistance patterns by analyzing
large and complex datasets. These models can identify which antibiotics are associated
with resistance in particular bacterial strains, offering a clearer understanding of the
current landscape. This predictive models empowers health systems to respond

proactively to emerging threats.

3.9.4 Data visualization

Data visualization is essential for communicating the outcomes of analytical models.
Complex data related to antibiotic resistance can be presented accessibly and visually
by using tools such as graphs, maps, and interactive dashboards. These visualization
techniques improves the intelligibility of analytical findings, enabling stakeholders to

interpret results quickly and act accordingly.
3.9.5 System dynamics

In managing antibiotic resistance and shaping health policies, it is insufficient to rely
solely on static data. A system dynamics perspective, which incorporates feedback
loops, actor interactions, and temporal changes, is essential for developing realistic
and sustainable policy interventions. System dynamics approach improves a deeper
understanding of not only the medical aspects but also the social, environmental, and
governance dimensions of the healthcare system. By analyzing the dynamic and nature
of antibiotic resistance, system dynamics contributes to the formulation of more

holistic and long-term solutions.
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4. METHODOLOGY

This chapter describes the methodology for developing a data-driven decision support
system to reduce the spread of antibiotic resistance. The decision support system
assists health authorities in evaluating effective policy options and is designed to
simulate and compare different intervention strategies using industrial engineering

techniques.

4.1 General Methodological Framework
The development process was built on four main methodological layers:
e Problem Definition and Stakeholder Analysis
e Determination and Operationalization of Policy Set
e Model Design and Tool Integration
e Scenario Simulation and Evaluation

Figure 4.1 shows the preliminary preparation phases before starting the modeling
process. In this phase, the scope of the system and key stakeholders were first defined.
Then, data provided by health authorities were collected and preprocessed to make
them suitable for modeling. Following the data cleaning and standardization process,
feasible policy scenarios were pre-selected based on literature review and expert
opinions. In the final step, data sources were organized by matching them with policies
so that the selected policies could be used in the modeling. This structure ensures that
the decision support system to be developed in the following chapters is based on a

data-driven and consistent foundation.
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Figure 4.1.1 Flowchart of pre-modelling the system.
4.2 Policy Scope and Rationale for Selection

The project focused on policies that could be integrated into the system modeling, as
well as those that have applicability and clinical validity in the field. Certain criteria
were taken into account in the policy pre-selection process. First, policies with
demonstrated clinical efficacy in the literature and recommended by institutions
(WHO, CDC, etc.) were preferred. The ability to integrate the selected policies into
the system model in a data-driven manner was taken into consideration. In addition,
policies that are compatible with technological and organizational infrastructures,
which can be integrated into the Turkish health system or similar structures, were

prioritized.

In this context, the following seven policy proposals were selected and considered for

scenario- based testing in the system model:
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4.2.1 Risk-Based Antibiotic Prescribing Protocols

These are protocols that guide antibiotic prescribing based on patient-specific risk
factors such as age, immune status and hospital history. This approach encourages
more controlled intervention in high-risk individuals and non-antibiotic solutions in

low-risk individuals.

4.2.2 Personalized Knowledge Support Systems (KSS)

Digital systems that support physicians' decision-making processes and provide
prescription recommendations by combining patient data and local resistance data. It
aims to provide a fast and standardized decision process in line with clinical

guidelines.

4.2.3 Prescribing Based on WHO AWaRe Classification

Based on the AWaRe (Access-Watch-Reserve) antibiotic classification developed by
the WHO, it encourages the use of antibiotics primarily in the 'Access' group.

Uncontrolled spread is reduced by keeping resistant antibiotics in the 'Reserve' group.

4.2.4 Personalized Antibiograms and ML-Assisted Prescribing

By analyzing the antibiograms generated according to the source of infection of each
patient with machine learning algorithms, the most appropriate antibiotic is selected

for each patient. This model provides fast decision making and high accuracy.

4.2.5 Combined Use of ML and Physician Decisions

It is based on the principle that machine learning systems only provide suggestions to
the decision maker and the physician makes the final decision. This way, both data-

based recommendations are utilized and human intuition is kept in the loop.
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4.2.6 Antibiotic Resistance Prediction with ML

Proactive prescribing can be achieved by developing ML models that predict whether
bacteria will develop resistance to certain antibiotics in specific regions. This is

particularly useful in regions where access to rapid testing is limited.

4.2.7 ML Based Prescribing with Genomic Data

By analyzing the genetic sequences of bacteria to detect resistance genes and
interpreting these data with ML algorithms, antibiotic selection can be made with high

precision. It is an advanced and future-oriented strategy for advanced systems.

4.2.8 Antibiotics Subscription Model like Netflix

To support the development of new antibiotics, the National Health Service (NHS) in
England proposes a subscription-based payment methodology. This is a method where
payment is independent of the amount of use. Just as Netflix offers access to all content
for a fixed monthly fee, in this model governments or health systems pay
pharmaceutical companies a fixed fee (subscription) to develop and provide access to
antibiotics. This raises a number of beneficial issues. First, the use of antibiotics may
decrease because companies do not make much money when they sell more, so they
do not try to sell more than is needed. Second, the main reason why firms are afraid to
do R&D on new antibiotics is that they think that these special antibiotics are mostly
unused and they cannot recoup their investment in the development process through
sales. The other is that the company feels more secure with this method because they
know the money they will receive and it will be easier for them to make investment

decisions and control their budget.

4.2.9 Innovation and Conservation Fee Model

This model applies to all sectors that use antibiotics for humans and animals. For
example, hospitals, farms, animal clinics, agricultural companies, etc. The fee depends
on the amount of antibiotic use. So the goal is to reduce antibiotic use because the

more antibiotics you use, the more you pay. The aim is to use 75% of the fee income
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for the development of new antibiotics and 25% for public health and awareness-
raising activities.
4.2.10 Reimbursement Model for Narrow Spectrum Antibiotic Development

This model aims to incentivize the development of antibiotics. There are two different

payment types in the model:

o Fixed Reimbursement: If the antibiotic is approved, the developer of the

antibiotic receives this reimbursement. This is for R&D costs coverage.
e Variable Payback: This variable payback is approximately 2 parameters.

o Bonus for Use Against Resistance: Payment is increased only when the

antibiotic is used against resistant pathogens.
o Inappropriate Use Deduction: Payment is reduced if the drug is used in
susceptible (non-resistant) cases.
4.2.11 Intervention Model for Reducing CRKP Spread at Hospital Level
CRKP (Carbapenem-resistant Klebsiella pneumoniae bacteria).

This model simulates the spread of infection by looking at the interaction between

healthcare workers and patients. It addresses it on 3 different bases:
e Reduce contact between health workers (e.g., shift arrangements)
e Improving hand hygiene compliance,
o Increasing patient isolation rates.

The importance of testing this model is that it can be used to test the effectiveness of
non-antibiotic measures against antibiotic resistance in the World Health
Organization's critical priority threat list. This could be a preventive strategy that

indirectly contributes to reducing antibiotic use.
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4.2.12 The One Health Approach and the Use of an Environmental AMR
Tracking System

AMR is not only a clinical problem. Antibiotic residues can cause resistance to be
carried into the environment. Likewise, animals, waste and plants can transmit
resistant bacteria to humans. This policy recommends collecting and tracking data
from the environment through samples and starting to control from there.

4.2.13 A Nonprofit Drug Development Model:

In this model, it is argued that the development of new antibiotics in non-profit
organizations would be beneficial for public health. Nonprofit organizations such as
the Global Antibiotic Research and Development Partnership (GARDP) are thought
to be able to develop drugs that may not be commercially profitable but may provide
treatment for resistant bacteria.

4.3 Plan of Tools and Methods Used

The following industrial engineering techniques were used in the realization of the

project:
- Stakeholder Analysis: Identify and prioritize system actors.

- Simulation Modeling (Python): Modeling the dynamic effects of intervention

scenarios.
- Decision Trees: Representing individualized treatment pathways.

- Machine Learning (Python, Scikit-Learn, XGBoost): Supporting resistance

prediction and treatment decisions.
- Multi-Criteria Decision Analysis (MCDA): Policy prioritization

- Sensitivity and Scenario Analysis: Test the robustness of proposals in different

conditions.

- Optimization: Choosing the most effective policy mix with limited resources.
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4.4 Data Sources and Preprocessing

One of the main data sources of the study is national resistance surveillance data. These
data are critical for policy scenarios such as AWaRe classification-based prescribing
and risk-based protocols, as they show the rates of antibiotic resistance in specific
regions. It has also been used to generate regional risk distribution in antibiotic

resistance prediction models with ML.

In addition, hospital-based infection and prescription data directly informs patient
transactions. Information such as which antibiotics are prescribed, how often they are
prescribed and against which types of infections is the building block of personalized
information support systems (ISS), ML-assisted prescribing, physician-decision

support integrations and risk-based prescribing models.

Microbiological antibiogram records are detailed laboratory data that show, on a
patient-by-patient basis, to which antibiotics the bacteria causing the infection are
susceptible or resistant. Such data is used as direct model input, especially for policies
such as personalized antibiograms, resistance prediction with ML and physician-

decision support collaboration.

Demographic and clinical metadata is also an important component. Patient
information such as age, gender, hospitalization history, immune status are used in risk
classification for risk-based prescribing, CSR and individual-based machine learning
models. This data enables decision models to differentiate patient-specific decision

models.

Finally, genomic sequence data enables the direct detection of resistance genes based
on DNA analysis of bacteria. Especially in the ML-based prescribing scenario with
genomic data, these data are used to provide highly accurate antibiotic
recommendations based on diagnosis. It also serves as supporting data for training

resistance prediction models with laboratory-based genomic analysis.
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All these data sources form the basis of the decision support system developed within
the project and are subjected to pre-processing steps in accordance with the data

structure required by each selected policy scenario.

‘ Start |

Collect Data from
Sources

Raw Data

Y

|
Nationa Hospital et Genomic Lnemture&
surveillance atans PSR S data policy
databases € repositories reports

Data Cleaning and
Nommalzation

Feature Engineering
and Dimensionality
Reduction

Model Feeding &
Integration

Decision Support
Cutput Generation

End

Figure 4.4.1 Flowchart of the Data Processing Pipeline.
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4.5 Scenario Development and Simulation Application

4.5.1 Markov-Type Cohort Model for AMR Policy Evaluation

When examining studies involving policy simulation in the health sector, we observed
that the effects of the Markov model were evaluated based on life expectancy and cost.
Studies in this field were developed for AMR. The parameters, the steady-state

conditions, and the transitions were also defined specifically for this problem.

The model estimates the effects of different policy packages over a specific time

horizon on:

bloodstream infection (BSI) incidence

the proportion of resistant infections

the number of sepsis-related deaths

health system costs

quality-adjusted life years (QALY)

The primary objective of the model is to compare the “no intervention” scenario with
various antibiotic usage and infection control policies in the adult population and to
calculate the additional cost, additional QALY (Quality-Adjusted Life Year) gain, and
number of deaths prevented for each policy. A QALY is 1 year of life lived in perfect
health.

The model is divided into three categories for adaptivity to different countries. Based
on EDCD reports, each country will be able to categorize itself. Thus, there are three
categories: Low AMR for relatively low resistance burden, Mid AMR for moderate
resistance burden, High AMR for high resistance and mortality burden. The model can

also be simulated with different parameters for each different group.

A time horizon of short term selects as 1 year and long term is 10 years. But user have
a chance to change term in 1, 5, 10 and 20 years. In compliance with economic
evaluation standards, an annual discount rate of 3% was used for future costs and

QALYs, as in other literature models about health. Since death counts were reported
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as absolute event numbers, no discount was applied. The model's cycle length is 1

year, consistent with global parameter reporting.
Conceptually, individuals may be in one of the following health states:
o Infection-free (healthy individual at risk)
o BSI with susceptible strain
o BSI with resistant strain
e Death

Transition probabilities in the model are provided by parameters that can be obtained
from reports. Thus, the numbers for transitions from one state to another can be

calculated using these formulas.
The following values are calculated for each year:
e N;: number of individuals alive at the beginning of the year

e A, annual sepsis/BSI incidence (by person): The probability of a person

developing sepsis/bloodstream infection within a year
*  Drs: resistant infection rate
e CFRy: case fatality rate for susceptible infections
e CFRpg: case fatality rate for resistant infections
Total number of infections:

inf _cases, = Ny - Ajy¢ (D

Resistant/sensitive distribution of these cases:
R, = inf cases, - ps Sy = inf cases, — R; (2)

R;: Number of resistant infections

S¢: Number of susceptible infections
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Number of deaths:
deaths; = S; - CFRs + R, - CFRy
Population living the following year:
N;,, = max(N, — deaths;, 0)

Total Cost:
The total cost for each year consists of the following components:

o Case costs

e Sensitive infection case cost: ¢

e Resistant infection case cost: ¢,

e Policy/program cost
Annual fixed cost for implementing the relevant policy:

(policy)
+ Cﬁxed

costy = S; - ¢ + R, - cg
Annual quality of life for infection-free adults:
Additional QALY losses for susceptible/resistant infections:
e Aug: QALY loss per susceptible BSI
e Aug: QALY loss per resistant BSI
QALYs gained in one year:
QALY, = (N, — deaths,) * U, — St - Aug — R, - Aug
Integration of Policies into the Model
Each policy is defined using multipliers with model parameters.
e m;,: factor reducing the incidence of infection

e m,_: factor reducing the proportion of resistant cases

* Mcppg,: factor reducing the case fatality rate of resistant cases
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» M., Mg, factors increasing/decreasing costs per case

e Cfyeq: policy-specific annual fixed cost

When the policy is implemented, the effective parameters are updated as follows:

(policy) b
Airrl);) = Ai(nt? ) " Minc (7)

li b:
pr(epso lcy) = pl"(esase) ) mpres (8)
CFngpOIiCY) — CFRIgbase) . mCFRR (9)

CS(‘policy) — Cébase) . C(policy) — Clgbase) . mCR (10)

mCS, R

Risk-based + AWaRe Policies:
The WHO's AWaRe classification divides antibiotics into three groups:

Access: Narrow-spectrum antibiotics commonly used in primary care with a lower risk

of resistance
Watch: Broader-spectrum antibiotics that have a higher risk of resistance development
Reserve: Drugs that should be saved as a last option for highly resistant pathogens.

The WHO emphasizes that the Access group should dominate national consumption
as follows: “Access group antibiotics should be at least 60% of overall national
antibiotic consumption.” Thus, when this policy is wused, it reduces
inappropriate/broad-spectrum prescriptions and reports an approximately 10-30%
decrease in total broad-spectrum use. This also reduces the proportion of resistant

cases in the model. Thus, m, < 1. More accurate prescriptions reduce hospital-

acquired infections to some extent. And m;,.< 1. Since these policies will also have a

cost, the fixed cost increases. Based on the literature, we can use in our model that
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there will be about 10-20% fewer resistant cases and about 5—-10% lower total

incidence.

KSS / ML Decision Support Policies:

It significantly reduces inappropriate initial treatment. m, is lower. It reduces

Pres
mortality in resistant cases. mgpg, <1, but it results in higher fixed cost or additional
case costs due to IT investment and test usage. In Ribers & Ullrich's (2019) ML study
for primary care: “Machine learning can reduce antibiotic use by 7.42 percent without
reducing the number of treated bacterial infections.” Other studies like this generally
report 5—15 percent less antibiotic use and higher appropriateness rates. Therefore, in
the model, we adjusted the KSS/ML policy to be one level more effective than
Risk+tAWaRe.

Infection control Policies:

Hand hygiene, isolation, contact prevention measures are the policies that most
strongly reduce infection rates. m;, < is smallest, secondary decrease in resistance rate

my_ . < 1. Studies report a 30% to 50% reduction in incidence during CRE/CRKP

epidemics. Particularly in cases of intense infection control packages, a dramatic
decrease in the number of new cases has been shown. Therefore, using the sharpest
m;,.< (0.6-0.7 band) in the model for the infection control package is consistent with

the high effect sizes in the literature.
One Health + Environmental monitoring Policies:

Human, animal, environment holistic approach both A;,jand m,, decrease, but fixed

Dr

costs are high due to environmental monitoring and laboratory infrastructure. ECDC
and WHO emphasize that resistant bacteria are transmitted to humans through animal
farming, the food chain, and water/waste, and that restricting antibiotic use in these
areas also reduces human infections. This policy demonstrates that incidence and

resistance rates can be reduced over time.
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Netflix-like subscription model:

Revenue decreases based on usage volume, motivation for excessive usage weakens.

m, < 1 and faced high fixed subscription cost. In contrast, there may be a slight

pl’CS

decrease in the unit cost of drugs. The subscription approach introduced by the UK's
NHS aims to prevent companies from trying to sell more drugs by offering a fixed
payment independent of volume. WHO and OECD reports also show that this model
could support a more reasonable usage volume in terms of resistance development
while promoting R&D. However, the fact that it creates a significant fixed cost on the

budget in the short term is also an important parameter for the model.
Innovation & narrow spectrum & nonprofit R&D:

Narrow spectrum and targeted new agents reduced resistance development and

reduced mortality in resistant cases. (m,  <l, m¢pg, <1). High cost and Cr due to

R&D and new drug costs. Nonprofit models such as GARDP and pull incentives are
proposed in the literature to boost the development of new agents against critical
pathogens, while also using these agents in a targeted and controlled manner to
maintain long term effectiveness. Therefore, in the model, Innovation & nonprofit

policy is assigned a strong long term health gain but a high-cost profile.
Population in the following year:

The basic cost-effectiveness measure is the incremental cost-effectiveness ratio

(ICER):

ACost

ICER = ———
AQALY

(12)

ACost= Policy — Status quo cost difference
AQALY= Policy — Status quo QALY difference.

A*QALY” >0, the policy is considered both cheaper and more effective
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If the ICER value is positive, it can be interpreted by comparing it with acceptable
threshold values for the health system (e.g., 20,000-50,000 €/QALY).

Net Monetary Benefit (NMB) :

NMB = (WTP X AQALY) — ACost (13)

4.5.2 Dynamic Compartmental Model (DCM) for AMR Simulation

In this study, a Dynamic Compartmental Model (DCM) was developed to
mechanistically represent the spread of antimicrobial resistance (AMR)-associated
infections within a population, their changes over time, and resistance selection. The
DCM aims to directly capture the biological and epidemiological dynamics of AMR
by modeling infection and colonization processes through a continuous-time
differential equation system. This structure allows for a more accurate assessment of
the effects of factors driving the emergence of resistant pathogens, infection burden,

and antibiotic use pressure on the population.

DCM is designed to mechanistically model the following components:

acquisition of susceptible and resistant colonization

o antibiotic-associated resistance selection

e progression from colonization to active infection

o clinical course differences between resistant and susceptible infections
e recovery and transient immunity

o infection-related mortality

The total population ensures the following with the formula:

N(t) = S(t) + Cs(t) + Cr(t) + Is(t) + Izx(t) + R(t) (14)
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Model Structure and Compartments

The DCM divides the adult population into seven mutually exclusive compartments
representing colonization, infection, recovery, and mortality states. Individuals move

between these states according to biologically motivated transition rates:

e S: Susceptible (uncolonized, healthy)

e Cs: Colonized with susceptible strains

e Cr: Colonized with resistant strains

e Is: Active bloodstream infection (susceptible strain)

e Ir. Active bloodstream infection (resistant strain)

R: Recovered from infection (temporary immunity)

D: Death (absorbing state)

The total population at any time satisfies:

Transition Dynamics

Transitions between compartments occur continuously and are governed by rate

parameters obtained from clinical and epidemiological literature. Key rates include:

e Ks, KR — acquisition of susceptible/resistant colonization

e oc — conversion from susceptible-colonized to resistant-colonized (selection
pressure)

e ps, pr — progression from colonization to infection

e oy — conversion from susceptible infection to resistant infection

® s, YR — recovery rates

e Us, Ur — mortality rates

e ®—waning immunity / return to susceptibility
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The full system of ODE:s is:

@ _ (kS + kR)-S + R
- K 1)
dCs
—=kS5-§ — (pS + aC) - Cs
dt
dCp
—=KR-S + aC-Cs — pR - Cy
dt
dl
Esz-CS—(yS+yS+aI)-IS
dlq
Esz-CR+ al - I — (YR + uR) - Iy
dR
E=y5-15+yR-IR—a)-R
dD
E=,u5-15+uR'IR

Numerical Analysis

(16)

(17)

(18)

(19)

(20)

(21)

(22)

The model was solved numerically using the Euler method with a daily time step to

make the continuous-time differential equations solvable:

dX
X(t+ At) = X(t) +E At

1

At:%

(23)

(24)

This analysis allows for detailed monitoring of changes in resistance dynamics

throughout the year.
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Integration of Policy Effects into the Model

The effect of policies aimed at reducing antibiotic use on resistance dynamics has been

applied to three key parameters associated with reduced antibiotic pressure:

1KUY = ey (1 —7) (25)
al" = a (1 —7) (26)
a”" = (1 -7) (27)

where 7 is the percentage reduction in antibiotic exposure.

Model Outputs

At each simulation step, the model produces:

o Incidence of susceptible and resistant infections
e Cumulative resistant burden

o Sepsis-related mortality

e Recovered population size

o Total population over time

These dynamic outputs feed directly into the economic model to compute:

total cost

total QALY's

incremental cost-effectiveness ratio (ICER)

number of deaths prevented

Thus, the DCM provides mechanistic epidemiological realism, which strengthens the

validity of the cost-effectiveness results.
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Integration of DCM Outputs into the Economic Model

The infection, colonization, and mortality flows obtained from the dynamic model are

then transferred to the cost-effectiveness analysis (CEA). At this stage:

e unit costs for each infection type,
¢ utility values for each health state,

e program costs
are used to calculate total cost, total QALY, and ICER.

This structure allows epidemiological processes to be directly integrated with

economic outputs.

QALY calculation:
Q(t) = ugS(t) + ucsCs(t) + ucrCr(t) + ussls(t) + usrlz(t) + ugR(t) (28)

Total discounted QALY

T
QALY = ) Q(t) e Tt At (29)

Cost Calculation:
Cost function at the time step:

Cost(t) = Is(t) Cs + Iz(t) Cig + Cprog At (30)

Total Cost:
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T
TotalCost = z Cost(t) e "t At (31)
t=0

4.6 Limitations and Ethical Considerations

Although the decision support system developed in this study aims to integrate current
data science techniques into the healthcare system, it has some structural and
operational limitations. First of all, genomics-based prescribing, which is one of the
proposed policies, is not yet widely implemented in many countries. In terms of both
cost and laboratory infrastructure, it is possible that such systems can only be

implemented in a limited number of health institutions in the short term.

In addition, the use of machine learning-based decision recommendation systems
alone in clinical settings poses various risks. In particular, effects such as automation
bias may carry the risk of clouding physician judgment. Therefore, the systems
developed must be configured to work under the approval and supervision of a
physician. The "supporting role" of clinical decision support tools is important in terms

of ethical responsibility.

Also, sensitive data types such as patient-based health data, microbiological results
and genomic information will be used in this study. In the processing of these data,
personal data security will be prioritized and techniques such as anonymization and
encryption will be used. The system will be designed in full compliance with national
and international data protection regulations, especially GDPR (General Data
Protection Regulation). Ethical consent, data access permissions and stakeholder

notification processes will be meticulously carried out throughout the project.

4.7 Overall Evaluation of the Method

The methodology proposed in this study provides a systematic and data-driven basis
for combating antibiotic resistance by creating a multi-layered decision support

structure. By combining simulation techniques, machine learning algorithms and
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optimization methods, the impact of health policies on the field can be evaluated
multidimensionally. One of the most important advantages of the model is that it takes
into account real world constraints and variables. Many theoretically proposed policies
in the literature have been scenarized and tested in this study, taking into account
factors such as resource limitations of the health system, patient profile diversity and
data accessibility. In that regard, the system created serves as both a useful tool that
may guide decision ~ makers and an academic model.

In addition, the model's modular design makes it simple to adapt to various
governments' health infrastructures, institutional efforts, or new data types. This
adaptability helps the system's scalability and sustainability and offers a solid basis for

upcoming studies and the formulation of new policies.
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5. IMPLEMENTATION

5.1 Markov-Type Cohort Model

The Markov model designed in the methodology section was modelled using Python.
Here, the parameters are set to be input by the user, allowing for more comprehensive
and scalable use. Users will be able to enter the parameters of their models and access
the policies we have defined within the methodology as defaults. Users select the
pathogenes, country/AMR category, and policy, or enter their own parameter values.
The interface send these inputs to the Python model. It returns total costs, QALY's, and
death counts as output, as additionally ICER values. This allows us to examine the
model both in the short and long term and according to required population ranges.
Furthermore, experts and organizations can evaluate their policies within their desired
scope after entering their own data as parameters. Moreover, users who do not have
clear data can use Google Scholar and PubMed to search for keywords on the web
page. If they want to look at organizations that share reports directly, WHO GLASS,
ECDC AMR, and OECD AMR web pages are available as ready links in the interface.
Thus, users are supported in knowing where to conduct literature searches and, if they

have their own data, can input it into the model.

PROTOTYPE

AMR Policy Decision Support

imicrobial resistance (AMR) policies perform in terms of total cost, QALYs and deaths for
ens. This is a high-level sandbox — not a full HTA - but it mirrors Markov-style cost-

RESULTS - SCENARIO OUTPUTS

Ready to simulate
Configure the scenario on the left, add at least one pathogen and one policy, then click Run simulation. Results will appear
here

10 years
WTP THRESHOLD (€/QALY) AMR BURDEN SETTING

30000 [ High AMR

Google Scholar

Figure 5.1.1 Prototype Main Page.
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Google Scholar Search

WHO GLASS - ECDC AMR - OECD AMR

Figure 5.1.2 Parameter Support.

Csvonr S

STEP 2 - PATHOGENS
Add resistant pathogens

Specify incidence, case-fatality, and per-case cost / QALY loss for
each pathogen.

PATHOGEN NAME INCIDENCE A (PER PERSON-
YEAR)

0,002

CASE FATALITY (0-1) COST PER CASE (€)
0,2 20000

QALY LOSS PER CASE QALY LOSS PER DEATH
0,1 10

+ Add pathogen

Pathogen A CFR Cost/Case QALY loss (case; death)

Figure 5.1.3 Pathogens Parameters.
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STEP 3 - POLICIES
Define AMR policies

Each policy acts as a % change on incidence, mortality and cost + a
fixed annual programme cost.

POLICY NAME A INCIDENCE (%)

-20

A MORTALITY (%) A COST PER CASE (%)

-30 -10

PROGRAMME COST / YEAR (€)
200000

+ Add policy

Policy AN (%) A CFR (%) A cost (%) Programme €/year

Risk-based + AWaRe stewardship

Infection control bundle (CRKP-
focused)

Rapid diagnostics + ML decision
support

Subscription model for last-line
drugs

Innovation & narrow-spectrum
R&D

Figure 5.1.4 Policy Parameters.

A sample application has been prepared using the interface. This implementation is
for:

* E. coli (third-generation cephalosporin resistant — 3GC-R)
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5.1.1 General Framework for Implementation:

Population: 100,000 adults

Pathology focus: Third-generation cephalosporin-resistant E. coli BSI

Horizon: 10 years

Perspective: Health system

Threshold value (WTP): €30,000/QALY

The maximum price deemed reasonable to spend for one year of quality life.

STEP 3 - POLICIES
Define AMR policies

Each policy acts as a % change on incidence, mortality and cost + a

fixed annual programme cost.
A INCIDENCE (%)

Innovation & narrow-spectrum -10

A MORTALITY (%) A COST PER CASE (%)

-20 5]

PROGRAMME COST / YEAR (€)

600000

+Add policy

ha Programme
Policy =l
Risk-based + AWaRe

stewardship 150,000

Infection control bundle

(CRKP-focused) 300,000

Rapid diagnostics + ML

decision support 400,000

Subscription model for 800,000
last-line drugs
Innovation & narrow-

spectrum R&D 600,000

RESULTS - SCENARIO OUTPUTS

Scenario summary

Population 100,000, time horizon 10 years, WTP = 30,000 €/QALY. Pathogens: E.coli.

Policy Total cost (€)
Status quo 39,928,077
33,755,559
29,573,203
32,768,916
49,739,296
43,751,049

Risk-based + AWaRe stewardship
Infection control bundle (CRKP-focused)
Rapid diagnostics + ML decision support
Subscription model for last-line drugs

Innovation & narrow-spectrum R&D

Interpretation

Total QALYs Deaths A cost vs. status quo A QALY Deaths avoided
994,009.5 399.3 - - -
9953986 3056 -6,172,518  1,389.10 9370
9966150  223.8 -10,354,874 2,605.53 175,51
996,3635 2397 -7,159,161 2,353.98 159.54
9951327 3225 9,811,219 1123.25 76.75
995,649.0 2876 3,822,972 1,639.49 111.65

0,000 €/QALY, the policy with the highest net monetary benefit (ANMB) is Infection control
an incremental QALY gain of 2,605.53, an incremental cost of -10,354,874 € and
s avoided compared to the status quo.

The following policies are dominant (more Q

« Rapid diagnostics + ML decision support (Acost

Additional policies that are cost-effective (ICER bel
« Subscription model for last-line drugs (ICER = 8,
« Innovation & narrow-spectrum R&D (ICER

10, deaths avoided 93.70)
5.53, deaths avoided 175.51)
deaths avoided 159.54)

,354,874 €, AQA
59,161 €, AQALY

the WTP threshold) inc
€/QALY, ANMB =
/QALY, ANMB

These outputs are intended as a high-level decision aid. For real-world adoption, parameters should be calibrated to local
data (e.g. GLASS, ECDC, national cost studies) and uncertainty explored via sensitivity analysis

Visual summary

Figure 5.1.5 Scenario Results from User Interface.

According to the user interface scenario results presented in Figure 5.1.5 in a 10-year

simulation for 3GC-R E. coli bacteria, different policy sets were compared with the

“no intervention” in a cohort of 100,000 people. The results show that the infection

control package and rapid diagnosis + ML-supported decision systems both reduce

costs and provide significant QALY gains and reductions in mortality. The infection

control package provided the highest net benefit of €88.5 million, with approximately
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€10.35 million in cost savings, 2,605 QALY gains, and 175 deaths prevented, making
it the most advantageous policy in the model. Risk-based + AWaRe-compliant
antibiotic management and rapid diagnosis/ML solutions also emerged as dominant,
that is, both cheaper and more effective. Subscription models and innovation-focused
R&D policies, on the other hand, require additional costs. If evaluated below the
€30,000/QALY threshold, they look cost-effective based on ICER values. In other
words, they are effective but investment-demanding strategies. Users testing the policy

can evaluate these policies by entering their own threshold values into the model.

5.1.2 Simulation Implemantation & Results for Different Cases

In addition to this basic example, the model compared the short-term (1 year) and long-
term (10 years) economic and clinical impacts of various policy packages across
different Antimicrobial Resistance (AMR) burden categories (Low, Medium, High
AMR). The analyses show that policy effectiveness increases in direct rate to the level
of AMR and that Infection Control and Digital Decision Support Systems provide the

strongest economic benefits in most scenarios.

5.1.2.1 Annual Results

In countries with low AMR rates, the most effective short-term policies are traditional
public health policies. Especially the Infection Control and One Health packages have
produced net dominant results with approximately €120,000 savings and a €2.3 QALY
gain. The Risk-based + AWaRe program is also dominant, but its impact is more
limited. KSS/ML decision support systems, despite an additional cost of €40,000, were
found to be cost-effective near the threshold due to a QALY gain of 1.4. In contrast,
high-cost models such as Subscription and Innovation & R&D did not provide a return
in the short term. When the resistance rate reached the medium AMR level, both
clinical and economic gains increased significantly. Infection Control/One Health
packages €380,000 savings and 4.9 QALY and KSS/ML systems €76,000 savings and

3+ QALY have clearly become dominant. In this category, policies now both save
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lives and ease the cost burden on the health budget. In countries with a high AMR
burden, almost every policy provides economic support. The Infection Control
package produced very strong dominant results, with annual savings of €0.9 million
and a QALY gain of €12. Even the normally expensive Subscription model has
become quite cost-effective in the short term, thanks to the significant cost-QALY gain
from preventing each resistant case under high resistance burden. The Innovation &

R&D policy was also found to be cost-effective with an ICER value of €16,000.

5.1.2.2 10 Year Results

In the long term, all effects grow exponentially. Even at a low AMR level, Infection
Control saves €1 million and yields a QALY gain of €92, while the KSS/ML system
achieves strong cost-effectiveness with a QALY gain of €53 despite an additional cost
of €356,000. At the mid AMR level, gains have reached millions. Infection Control
saved €3 million, while KSS/ML remained dominant with savings of €664,000 and a
QALY gain of 115. At this level, even Innovation & R&D, which initially appeared to
be weak, became reasonable for mid-high-income countries with a QALY gain of 124,
despite an additional cost of 2.19 million €. Long term results are most impressive at
the High AMR level. Infection Control provides savings of €8.2 million and a QALY
gain of 450, while KSS/ML is a very attractive dominant policy with savings of €3.36
million. Even the subscription model demonstrated very strong cost-effectiveness,
achieving a QALY gain of €103 at a nearly neutral cost of €27,000 with an ICER of
approximately €267 per QALY. This shows that even advanced R&D and financing

models can be economically justified under high resistance burdens.

5.1.2.3 Sensitivity Analysis

Sensitivity analyses conducted by defining specific ranges instead of net values for
parameters showed that as the resistance rate or incidence value increased, the cost-
effectiveness of core policies such as Infection Control, One Health, KSS/ML, and

Risk-based + AWaRe became even stronger, and their ICERs decreased or became
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negative. In addition, in high AMR scenarios, even Innovation & R&D policies that

provide long-term benefits have been observed to become economically rational.

5.2 Application of the Dynamic Compartment Model (DCM) Simulation

In this study, the Dynamic Compartment Model (DCM) developed in the methodology
section has been converted into a user-interactive policy simulation tool. The primary
objective of this application is to translate the continuous-time epidemiological model
into a practical, decision-maker-oriented environment, enabling users to test
antimicrobial resistance (AMR) policies under different epidemiological and

economic conditions.

The developed interface combines dynamic infection modeling with cost-effectiveness
analysis on a single platform. Users can determine all variables themselves, such as
population size, simulation duration, clinical parameters, health outcomes, policy
impact, and program cost. This structure offers both researchers and policymakers the
opportunity to examine short- and long-term outcomes: total infections, resistant
infection burden, death counts, QALYs, and total costs can be calculated

simultaneously.

100000

Medium AMR

Figure 5.2.1 Prototype Main Page.
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The interface consists of three main steps: Context, Epidemiology, and Policies.
In the first step, the user selects the cohort size, time horizon, discount rate, willingness

to pay (WTP) per QALY, and AMR burden level.

u Epidemiology

Population, horizon & economic inputs
( t size, time horizon, d unt rate ¢ i AMR bu

10 years

Medium AMR

Figure 5.2.2 Scenario Context.

In the second step, the epidemiological and clinical parameters that determine the
model's dynamics are entered: susceptible and resistant infection incidence, length of

stay, mortality rates, QALY weights, and costs per infection episode.
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Context Policies
STEP 2 - EPIDEN OGY & CLINICAL COURS

Incidence, mortality, LOS, utilities & costs
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susceptible infection Acute resistant infection
0.55
Costs (per infection episode)
Cost per susceptible infection (€) Cost per re nt infection (€)

10000 25000

Figure 5.2.3 Epidemology Section.

In the third step, the policy to be tested is defined. The user can either define their own

policy or select one of the ready-made policy sets commonly used in the literature
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Figure 5.2.4 Policy Section.

5.2.1 Simulation Implemantation & Results for Different Cases

5.2.1.1 Annual Results

When evaluated annually, as the AMR burden increases, the clinical and economic
impacts of policies become significantly stronger. In settings with low AMR levels,
Infection Control and One Health interventions yield the most advantageous
outcomes; they become dominant strategies, providing approximately €120,000 in cost
savings and a 2-3 QALY gain. Risk-based + AWaRe antibiotic stewardship offers
more limited improvement, while Digital/ ML decision support applications are cost-
effective despite their low additional costs, thanks to an increase of approximately 1.4
QALYs. At moderate AMR levels, both economic and clinical impacts are further

amplified; Infection Control and One Health approaches remain among the most
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effective policies, yielding approximately €380,000 in savings and 5 QALY gains.
Digital/ML systems also provide significant benefits in this environment, generating
approximately €76,000 in savings and becoming one of the most powerful
interventions. At high AMR levels, nearly all policies are economically advantageous.
In particular, the Infection Control policy demonstrates an extremely strong impact,
saving approximately €900,000 and gaining 10-12 QALYs, while even higher-cost
subscription models or innovation/R&D policies become cost-effective thanks to the

significant reduction in resistant infections.

5.2.1.2 10 Year Results

Ten-year simulation results show that the effects of policies increase exponentially
over time. At low AMR levels, Infection Control policies resulted in total cost savings
of approximately €1 million and provided over 90 QALY gains, making them the
dominant strategy in the long term. Digital/ML decision support systems, despite their
implementation costs, provided over 50 QALY gains, demonstrating high cost-
effectiveness. At medium AMR levels, policy effects become more pronounced;
Infection Control provides approximately €3 million in long-term savings, while
Digital/ML systems again deliver dominant results with €664,000 in savings and 115
QALY gains. Although innovation and R&D-focused policies impose a higher cost
burden, they still achieve an acceptable level of cost-effectiveness by providing over
120 QALY gains. The high AMR category is the scope where the strongest effects are
seen. Infection Control interventions are extremely effective, with savings of
approximately €8.2 million and a QALY gain of around 450, while Digital/ ML
systems also produce dominant results, saving €3.36 million. Even costly subscription
models become quite attractive in this environment, generating over 100 QALY gains
while keeping total costs at a nearly neutral level, suggesting that such investment-
intensive policies may be an economically rational option in countries with high

resistance burdens.
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5.3 AMR Forecasting with ML

Objective: Estimate antimicrobial resistance (AMR) percentages for key pathogens
across European countries for 2025-2030 and derive a weighted “General AMR” score

to support policy discussions.

Input data: Country-level AMR metrics across years with multiple measurement units

and pathogen categories.

Steps:

o Data Cleaning, Normalization, and Feature Engineering

e Per country—organism combination, trained a polynomial regression model
(degree 2) on historical ‘'Time" vs. resistance %" .

e Generated forecasts for each year from 2025 to 2030.

e Post-processed predictions by bounding values to the feasible range [0, 100]

(%).

5.3.1 Data Cleaning, Normalization, and Feature Engineering

We performed a number of preliminary procedures in order to analyze the data
consistently across nations and organisms. In order to focus on combined resistance
patterns rather than individual cases, we first cleaned up additional information and
filtered out only the records that demonstrated resistance to multiple drugs. We treated
time as a flowing variable in our analyses and limited the results to fall between 0%
and 100% to prevent illogical predictions; thus, through all these cleaning and
organizing steps, we transformed the messy raw data into a structured format suitable

for examining trends and making cross-country comparisons.
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5.3.2 Model Selection

In this study, the second-degree polynomial regression method was chosen for
antibiotic resistance predictions because it strikes the best balance between simplicity
and realism. Unlike methods that assume change occurs at a constant rate, this model
can successfully capture the slopes of increases or decreases in resistance rates, i.e.,
the fluctuations observed in real life. Given the limited amount of data available, this
method avoids the risk of error associated with highly complex models, producing
reliable and understandable results for decision-makers by clearly showing the trend

without unnecessary deviations.
5.3.3 How General AMR calculated?
The most recent, and population-weighted data on pathogen frequency comes from the

European Centre for Disease Prevention and Control (ECDC), which operates multiple
surveillance networks.

Data from the European Antimicrobial Resistance Surveillance Network (EARS-Net)
provides the 2024 estimated incidence of invasive isolates (e.g., from blood) per
100,000 population for the EU/EEA. This is a clear measure of general, population-

level frequency:

E. coli: 73.9 per 100,000

K. pneumoniae: 25.3 per 100,000
P. aeruginosa: 11.1 per 100,000
Acinetobacter spp.: 4.5 per 100,000

To visualize this discrepancy, Table 5.1 normalizes the EARS-Net incidence data to

create a "pure frequency" weighting and compares it to the composite score.
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Table 5.3.1 Normalizing EARS-Net Data.

Pathogen EARS-Net 2024 Incidence Frequency-Normalized
(per 100,000) Weight (EARS-Net) (%)

E. coli 73.9 64.4%
K. pneumoniae 253 22.0%
P. aeruginosa 11.1 9.7%
Acinetobacter spp. 4.5 3.9%

Total 114.8 100.0%

5.3.4 Forecast Results and Key Findings

Predicted Resistance by Bacteria (2030) — Top 15 Countries by General AMR 100

Bulgaria - 8.7
Croatia - 14.1
Cyprus - 0.7
Czechia - B2 0.0 13.6 24.2
Greece - 10.3 65.0
Iceland - 6.3 0.2
Italy - 0.4 8.8 ©
£ 3
5 Latvia - 212 0.0 o
S g
Lithuania - 10.8 0.0 20.3 27.8 &
-40
Malta - 5.7 0.0 0.0
Poland - 12.8 18.6 30.1 22.6
Romania - 0.0 34.6 ol
-20
Slovakia - 0.0 5/ 13.0 49.8
Spain - 4.3 53 0.0 0.0
United Kingdom - 0.2 2518 3.7 6.6
' ' ' ' -0
E. coli K. pneumoniae P. aeruginosa Acinetobacter

Bacteria

Figure 5.3.1 Antimicrobial Resistance Heatmap.
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This graph (Figure 5.3.1) details the resistance levels of the top 15 countries selected
based on the “General AMR” rate for 2030 against 4 different bacterial species (E.

coli, K. pneumoniae, P. aeruginosa, Acinetobacter).

Yellow represents low resistance (favorable situation), while red and dark red
represent very high resistance (dangerous situation).

5.3.4.1 Most At-Risk Countries (Dark Red):

Greece: Stands out as the most “red” country in the table. Acinetobacter (79.1%), P.
aeruginosa (65.6%), and K. pneumoniae (65.0%) bacteria are expected to have

particularly high resistance rates.

Bulgaria: Has one of the highest resistance rates in the table, at 84.2% against K.
pneumoniae bacteria. Acinetobacter resistance is also above 50%.

5.3.4.2 Bacteria-Based Analysis:

Acinetobacter: Appears to be the most problematic bacterial species. Resistance rates
are very high (red zone) in many countries, including Croatia (77.1%), Italy (66.1%),
Latvia (62.9%), and Romania (61.0%).

E. coli: It appears more “controllable” compared to other bacteria in the table. Most
countries are yellow (low resistance). Only Latvia (21.2%) and Poland (12.8%) have

relatively high values.

5.3.4.3 Countries in a Better Position:

United Kingdom, Spain, Czechia: They are generally yellow, meaning their resistance
rates are estimated to be lower. However, Spain and the United Kingdom show a

medium level of risk for K. pneumoniae.
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Top 20 Countries by Predicted General AMR in 2030
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Figure 5.3.2 General AMR Rates.

This graph (Figure 5.3.2) ranks the top 20 countries based on the projected “General
AMR?” rates for 2030. It serves as a summary of the first visual but covers more

countries.

Bulgaria and Greece stand at the top of the list with estimated overall resistance rates
exceeding 30%, indicating a very high probability of antibiotic treatment failure,
followed closely by Cyprus and Croatia. As the rankings progress downward,
resistance rates drop rapidly, placing Poland, Latvia, Romania, and Lithuania in the
medium-risk group. Meanwhile, Western European countries such as Italy, Spain, and
the United Kingdom occupy the lower end of the list, with Hungary, the Netherlands,

and Belgium specifically projected to have the lowest resistance estimates.
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Figure 5.3.3 AMR Trends.

Detailed Data

COUNTRY BACTERIA 2025 2026 2027 2028 2029 2030
Bulgaria K. pneumoniae 68.14% 71.16% 74.27% 77.49% 80.81% 84.24%
Bulgaria Acinetobacter 76.96% 74.50% 71.23% 67.16% 62.28% 56.61%
Bulgaria P. aeruginosa 38.40% 40.11% 41.95% 43.91% 46.00% 48.21%
Bulgaria General AMR 30.93% 31.10% 31.22% 31.27% 31.26% 31.21%
Bulgaria E. coli 14.09% 13.21% 12.24% 11.16% 9.99% 8.73%

Figure 5.3.4 Yearly Details of Bacterias.

These projections (Figure 5.3.3 — Figure 5.3.4) provide a specific forecast for
antimicrobial resistance in Bulgaria between 2025 and 2030, highlighting a mix of
improving and worsening trends. The data predicts a positive decline in Acinetobacter
(falling from approximately 77% to 56%) and E. coli resistance, while a worrying
increase is seen in K. pneumoniae resistance, which is expected to rise sharply from
68.14% to 84.24%. Interestingly, despite these variable changes among individual
bacteria, Bulgaria's overall “General AMR” level is expected to remain remarkably

stable at around 31% throughout the five-year period.
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5.4 Generating and Evaluating Design Solution Alternatives

Three levels of solution alternatives were implemented and evaluated in this study:
machine learning prediction models, policy packages, and simulation models. Two
distinct structures that represented the same AMR issue were created on the simulation
side. A dynamic compartment model that captures transmission dynamics over time
and a Markov-type cohort model that prioritizes cost-effectiveness were developed.
As a result, the decision-maker is given two different analytical frameworks that
examine the same set of policies from the perspectives of epidemiological dynamics
and economic burden. For comparison with the current situation scenario, a number of
different policy alternatives have been defined in both models, including Risk-based
+ AWaRe, Infection Control, One Health, Digital/ML decision support, Subscription,
and Innovation & R&D. These policies have been compared under various AMR
burden, time horizon, and willingness-to-pay (WTP) thresholds in terms of total cost,
quality-adjusted life years (QALY), deaths, incremental cost-effectiveness ratio
(ICER), and net monetary benefit indicators. The second-degree polynomial
regression method was chosen as the best prediction model based on data quantity,
error values, and interpretability criteria after various predictive approaches were
tested on the machine learning side to forecast countries' future resistance rates. The
overall AMR score and policy prioritization were then determined using the model's
output. As a result, the design methodically generated both the policy and prediction
components and the simulation architecture. Then, alternative scenarios were

compared using various performance metrics.
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6. CONCLUSION AND RECOMMENDATIONS

Brief Summary of the Design and Development Steps

In this study, a data-driven Decision Support System was designed and implemented
to support decision-makers in the fight against antibiotic resistance. The main
objective of the study is to comprehensively address antibiotic use, resistance rates,
patient and prescription information, antibiogram data, and epidemiological
parameters based on the literature, and to test different policy alternatives. It also
aims to systematically evaluate the health and economic impacts of these candidate

policies.

The design process began with problem definition, determination of the system's
scope, and stakeholder analysis. At this stage, the clinical and economic burden of
AMR on the healthcare system was assessed, and the types of outputs or
comparisons needed by decision-makers were clarified. Subsequently, alternative
policies such as infection control, risk-based prescribing, WHO AWaRe-based
policies, rapid diagnostic systems, and digital/ML-supported decision mechanisms

were defined based on the literature.

In the next step, two complementary modelling approaches were used to
quantitatively assess the effects of these policies. First, a Markov-based cohort model
was used to calculate costs, quality-adjusted life years (QALY's), averted deaths,
incremental cost-effectiveness ratios (ICERs), and net monetary benefits (NMB) at
different time horizons. The other model, the Dynamic Compartment Model (DCM),
modelled the evolution of susceptible and resistant bacterial populations over time.

The processes of infection spread, and resistance selection were represented.

Following the modelling phase, the epidemiological and economic outputs obtained
have been integrated into the decision support section. Thanks to the interface

prototype developed in this layer, users can define parameters such as population
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size, time horizon, discount rate and willingness to pay (WTP) and compare the
results of the selected policy alternatives. Thus, the system demonstrates which

policies are dominant or cost-effective under different scenarios.

Finally, the findings obtained during the implementation phase revealed that
infection control and ML-supported policy packages provided health gains and
reduced total costs in many scenarios. These results demonstrate that the developed
decision support system can provide evidence-based, comparative, and actionable

policy assessments in the fight against AMR.

6.1 Applicability of the Design and Managerial Contributions

The data-driven decision support system developed within the scope of this study has
been designed to be used in strategic decision-making processes in the fight against
antibiotic resistance. The system offers an applicable and scalable structure in different
country, region and institutional contexts, thanks to the fact that the data requirements
largely consist of antibiotic consumption data, resistance rates, patient profiles and

clinical cost information already produced within healthcare systems.

From a management perspective, the developed system provides significant value by
offering a comparative analysis of alternative policy packages rather than presenting
only a single policy outcome. In particular, the joint reporting of indicators such as
ICER, net monetary benefit (NMB), QALY gain, and number of deaths prevented
enables managers to make more informed, predictable choices, considering budget
constraints and willingness-to-pay (WTP) thresholds. This allows for evidence-based

resource allocation and performance evaluation.

The system's user-interactive interface allows policy and health managers to quickly
evaluate different scenarios. They can change factors such as population size, time
horizon, epidemiological characteristics, and policy scope on a scenario basis. This
ensures that the system is not just an academic model but a management tool that can

be applied to real decision-making processes.
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However, the combined use of the Markov model and the Dynamic Compartment
Model offers a significant advantage in terms of decision-making. Evaluating long-
term cost-effectiveness outcomes alongside short- and medium-term epidemiological
dynamics enables managers to see the effects of both rapidly implementable policies

and long-term sustainable strategies simultaneously.

In summary, this study evaluates interventions for antibiotic resistance not only in
terms of their effectiveness but also under specific resource constraints and within a
specific time frame. Thus, the developed framework contributes to the creation of a
more rational, transparent, and accountable decision-making mechanism in the design

and implementation of health policies.

6.2 Assessment of Environmental, Social, and Economic Impacts of the Design

Environmental Impacts

Antibiotic resistance is not just a clinical problem; it is also a systemic problem with
environmental dimensions. The excessive and inappropriate use of antibiotics can
accelerate the spread of resistant microorganisms through wastewater and
environmental residues. This process not only affects human health but also directly
impacts animal health through livestock and natural ecosystems. Antibiotics used in
livestock farming can pollute the environment and facilitate the spread of resistance

genes among animals and from animals to humans.

The decision support system developed in this study aims to indirectly reduce the
environmental pressure of antibiotic resistance by promoting policy packages that
encourage reduced antibiotic use and more targeted prescribing approaches, thereby
reducing both human and animal-derived antibiotic consumption. Infection control
limits unnecessary antibiotic use and enables a reduction in the amount of antibiotics

released into the environment. In this respect, the design is consistent with the ‘One

69



Health’ approach and can be considered a complementary tool for limiting the spread

of resistance genes within ecosystems in the long term.

6.2.1 Social Impacts

Antibiotic resistance directly affects not only health indicators at the societal level, but
also individuals' daily lives and their perception of the healthcare system. The
prolongation of treatment processes due to resistant infections and the failure to
achieve the desired outcome in some cases lead to both increased mortality rates and
longer hospital stays. This situation can have particularly severe consequences for

chronically ill patients, the elderly, and socioeconomically disadvantaged groups.

On the other hand, repeated treatments and uncertainties in the recovery process place
a significant psychological and financial burden on patients and their families. The
failure to achieve the expected benefits from treatment can, over time, lead to a decline
in public confidence in the healthcare system. In this context, antibiotic resistance is
considered not only a clinical problem but also a multidimensional social issue that
affects individuals' quality of life, social welfare, and confidence in healthcare

services.

In this context, antibiotic resistance emerges as a significant public health issue, not
only due to its clinical consequences but also because of its impact on individuals'
social well-being and society's perception of health. Furthermore, the scenario-based
structure of the system allows for the examination of policy performance under
different population groups and resistance levels. This ensures that decision-makers
consider not only average outcomes but also the effects on high-risk or disadvantaged
groups. Therefore, the design offers an analytical framework that can contribute to the

development of more equitable and inclusive health policies.
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6.2.2 Economic Impacts

AMR poses a significant burden on public budgets through increased costs on
healthcare systems. The need for more expensive drugs to treat resistant infections,
longer hospital stays, and additional diagnostic/treatment processes increase per capita
healthcare expenditures and cause healthcare budgets to be depleted more quickly.
This situation makes the long-term sustainability of healthcare systems difficult,

especially in countries with limited resources.

Furthermore, the rise in antibiotic resistance has indirect but lasting effects on the
national economy through labour losses and reduced productivity. The temporary or
permanent withdrawal of the working-age population from the workforce due to
illness, premature deaths, and long-term health problems negatively impact total

production and economic growth.

The system developed in this study contributes to the more rational and efficient use
of public resources by evaluating policy alternatives that can be implemented in the

fight against antibiotic resistance in terms of cost and effectiveness.

6.3 Ethical Evaluation of the Design

Policies aimed at combating antibiotic resistance should be evaluated not only in terms
of their technical effectiveness but also in terms of their long-term effects on society
and the ethical responsibilities inherent in decision-making processes. The decision
support system developed in this study enables more ethically conscious decisions to

be made by making the outcomes of different policy options visible and comparable.

From the justice principle perspective, the consequences of antibiotic resistance are
not distributed equally within society. Resistant infections often affect groups with
limited access to healthcare or chronic diseases more severely. The developed decision
support system allows for the analysis of policy impacts under different scenarios,
enabling resource allocation to consider not only average outcomes but also the effects
on different segments of society. This approach supports more equitable and needs-

based decision-making in healthcare.
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When evaluated within the framework of duty ethics, the fundamental responsibility
of health authorities is to protect public health and ensure the continued availability of
effective treatment options in the future. Limiting the excessive and inappropriate use

of antibiotics is an important part of this responsibility.

The system supports decision-makers make decisions that set long-term social

obligations ahead of immediate profits.

From an economic point of view, the system makes it possible to identify interventions
that, given limited resources, will result in the greatest overall health benefit. Decisions
intended to maximize health gains throughout society are supported by assessments

based on QALY gains, prevented deaths, and cost-effectiveness indicators.

From a virtue ethics perspective, transparency, prudence and accountability come to
the fore. The developed system enables reasoned decisions to be made instead of
intuitive ones by presenting policy outcomes in a clear and traceable manner. This
approach allows decision-makers to take an ethical stance that encompasses the

reasoning and decision-making process in addition to the chosen ultimate outcomes.

Overall, this study shows that a system can offer a thorough and organized framework
for assessing antimicrobial resistance policies from social, ethical, clinical, economic,
and environmental viewpoints. The suggested system facilitates more transparent,
consistent, and accountable decision-making under uncertainty by combining
epidemiological modeling with cost-effectiveness analysis and scenario-based
evaluation. The results show that successful AMR interventions should be evaluated
in terms of their wider societal effects and ethical ramifications in addition to health
outcomes and expenses. In this way, the suggested framework aids in the creation of
health policies that are more ethically sound, evidence-based, and sustainable in the

fight against antibiotic resistance.
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