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DESIGN OF A DATA-DRIVEN DECISION SUPPORT SYSTEM FOR 
COMBATING THE SPREAD OF ANTIBIOTIC RESISTANCE 

 
SUMMARY 

  

This study centers on the creation of a decision support system aimed at fostering the 
formulation of data-driven, sustainable health policies in the combat against antibiotic 
resistance, an escalating threat to global public health. The proposed design seeks to 
furnish health decision-makers with a comprehensive perspective by amalgamating 
health data from various sources, encompassing antibiotic usage statistics, resistance 
rates, patient profiles, and genomic information.  

The system's design is based on a multi-layered methodological structure. The first 
stage involved defining the system's scope, its main stakeholders and their needs, 
constraints and performance metrics. Following this, 13 different policy scenarios 
were determined based on literature reviews and expert opinions. These scenarios 
include risk-based antibiotic prescription, a usage model based on the WHO's AWaRe 
classification, personalised information support systems, machine learning-supported 
prescribing, and genomic data-driven antibiotic selection.   

Each policy proposal has been structured in a way that is suitable for modelling within 
the system using agent-based simulations (e.g. the SIER model) and machine learning 
algorithms. Although it has not yet been implemented, the design developed has been 
conceived in such a way as to enable each policy to be tested under different 
conditions, the results to be analysed comparatively, and proactive recommendations 
to be made to decision-makers. The data sets to be used in this context include national 
resistance surveillance data, patient and prescription information, antibiogram results, 
clinical and demographic data, and genome sequences.   

The architecture of the developed system has been designed based on principles such 
as a user-friendly interface, modular structure, and easy integration with different 
health systems. In addition, compliance with data privacy and ethical standards such 
as KVKK, GDPR, and HIPAA has been ensured to safeguard the security of personal 
health data. The current design process is creating a robust, flexible, and scalable 
infrastructure for future applications. In this regard, the system has the potential to be 
used not only in the fight against antibiotic resistance but also against similar public 
health threats.   
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xv 

ANTİBİYOTİK DİRENCİNİN YAYILMASIYLA MÜCADELE İÇİN VERİ 
ODAKLI KARAR DESTEK SİSTEMİNİN TASARIMI 

 
ÖZET 

Bu çalışma, dünya genelinde giderek büyüyen bir halk sağlığı tehdidi olan antibiyotik 
direnciyle mücadelede, veri temelli ve sürdürülebilir sağlık politikalarının 
geliştirilmesini desteklemek amacıyla bir karar destek sistemi tasarımını ele 
almaktadır. Bu bağlamda, önerilen sistem; antibiyotik kullanım verileri, direnç 
oranları, hasta profilleri ve genomik bilgiler gibi çok kaynaklı sağlık verilerini entegre 
ederek, sağlık karar vericilerine daha bütüncül bir bakış açısı sunmayı 
hedeflemektedir.  

Sistem tasarımı, çok katmanlı bir metodolojik yapı üzerine inşa edilmiştir. İlk aşamada 
sistemin sınırları, ana paydaşları, ihtiyaçları, kısıtları ve performans ölçütleri 
tanımlanmıştır. Bunu takiben, literatür taramaları ve uzman görüşleri doğrultusunda 
13 farklı politika senaryosu belirlenmiştir. Bu senaryolar arasında risk bazlı antibiyotik 
reçetelendirme, WHO’nun AWaRe sınıflamasına dayalı kullanım modeli, 
kişiselleştirilmiş bilgi destek sistemleri, makine öğrenmesi destekli reçetelendirme, 
genomik veriye dayalı antibiyotik seçimi gibi teknolojik yaklaşımların yanı sıra; 
antibiyotik abonelik modeli, katkı payı bazlı finansal sistemler ve geri ödeme esaslı 
ekonomik modeller gibi yenilikçi politikalar da yer almaktadır.  

Her bir politika önerisi, ajan tabanlı simülasyonlar (örneğin SIER modeli) ve makine 
öğrenmesi algoritmaları ile sistem içerisinde modellenmeye uygun biçimde 
yapılandırılmıştır. Henüz uygulama aşamasına geçilmemiş olmakla birlikte, 
geliştirilen tasarım; her politikanın farklı koşullarda test edilmesine, sonuçlarının 
karşılaştırmalı olarak analiz edilmesine ve karar vericilere proaktif öneriler 
sunulmasına olanak tanıyacak şekilde kurgulanmıştır. Bu çerçevede kullanılacak veri 
setleri arasında ulusal direnç gözetim verileri, hasta ve reçete bilgileri, antibiogram 
sonuçları, klinik ve demografik veriler ile genom dizilimleri yer almaktadır.   

Geliştirilen sistemin mimarisi, kullanıcı dostu arayüz, modüler yapı ve farklı sağlık 
sistemlerine kolay entegrasyon gibi prensiplerle tasarlanmıştır. Ayrıca, kişisel sağlık 
verilerinin güvenliğini sağlamak adına KVKK, GDPR ve HIPAA gibi veri gizliliği ve 
etik standartlara uyum gözetilmiştir. Mevcut tasarım süreci, ileride yapılacak 
uygulamalar için sağlam, esnek ve ölçeklenebilir bir altyapı oluşturmaktadır. Bu 
yönüyle, sistem yalnızca antibiyotik direnciyle değil, benzer halk sağlığı tehditleriyle 
mücadelede de kullanılabilecek potansiyele sahiptir 
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 INTRODUCTION  

Antibiotics have played an important role in the treatment of bacterial infections since 

their development. However, in recent years, the misuse and unnecessary use of 

antibiotics has started to turn this success into a threat. This threat poses a risk to both 

individual treatment and public health on a global scale. According to the World 

Health Organization, 10 million people are expected to die by 2050 due to antibiotic 

resistance. This shows the seriousness of the problem and the need for solutions to the 

problem. Resistant infections not only prolong the duration of treatment, but also lead 

to significant increases in healthcare costs. This shows that AMR (antimicrobial 

resistance) is not only a medical issue, but also an economic, social and environmental 

problem. In this engineering design project, our aim is to use our data-driven decision-

making system to analyze the spread of antibiotic resistance, predict future risks and 

develop engineering-based policies in a multidisciplinary way. The system aims to 

provide effective, sustainable and proactive solutions to health authorities, hospitals 

and clinical decision makers.  

 Methods To Be Covered By The Project   

The system to be developed under this project has a multi-component structure and 

includes various methods and technologies in an integrated manner. Firstly, a 

comprehensive data collection and management infrastructure will be established to 

securely collect, clean and make available for analysis multidimensional health data 

such as historical antibiotic usage records, resistance rates, infection types and patient 

profiles. Using these data, models will be developed to predict antibiotic resistance 

trends using machine learning algorithms (e.g. Random Forest, LSTM). In addition, 

the impact of different policy scenarios will be analysed by modelling the dynamics of 

the spread of infections in the community with agent-based simulation methods that 

take into account the interaction between individuals. The outputs of these analyses 

will be included in an optimisation process in which intervention strategies will be 

compared in terms of cost and effectiveness, and the most appropriate implementation 
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options will be presented to decision-makers. Finally, in order for healthcare 

institutions and public authorities to use the system effectively, a user-friendly decision 

support interface will be designed to provide access to both visual analyses of 

historical data and future policy recommendations.   

Compared to the approaches used in existing researches to produce and prevent 

strategies to combat antibiotic resistance, the system to be designed aims to provide a 

decision support system that will make health policies more innovative, effective and 

sustainable by using multiple industrial engineering techniqu
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 SYSTEM ANALYSIS  

 System Definition  

This system is a data-driven decision support system designed to develop effective 

policies to combat antibiotic resistance, prevent its spread and optimize the use of 

antibiotics in health systems. The most important feature of this system is to provide 

decision support with a holistic and comprehensive system perspective and 

engineering design in the problem of antibiotic resistance, which has many parameters 

and it is difficult to reveal effective combating methods from a single perspective. The 

system aims to predict the regional trends of antibiotic resistance, model transmission 

dynamics and optimize combat strategies in terms of cost and success with the outputs 

from these studies.   

2.1.1 System limits  

The scope of the system is limited to the management of antibiotic use within health 

systems and the monitoring of antibiotic resistance. The system is to be designed for 

deployment within hospitals, clinics and public health organizations, with a general 

function as a decision support tool for health authorities and hospital managers. The 

system's recommendations will be based on interventions at this level only; they will 

not directly influence individual patient decisions. Nevertheless, it will provide a 

higher dimensional perspective, which may influence individual orientation towards 

antibiotic use. The policies proffered by the system may not be applicable to the health 

systems of every country, which are subject to regulatory and bureaucratic barriers. 

This may have a bearing on the decisions and practices of policy makers.  

2.1.2 System stakeholders  

Health authorities represent the most significant stakeholders within the system. The 

ability to visually and comprehensively observe and monitor the effects of antibiotic 

resistance, a global problem impacting all aspects of public health, the spread trend, 

and the utilization of antibiotics, will serve as a pivotal guide in every decision made. 
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In this context, more precise measures can be implemented, with the relevant 

determinations to be made within the scope of the hospital or health institution, with 

the possibility of further development in the future. Countries and regions that 

currently do not possess or maintain data on this subject will be able to integrate into 

the system with their own data, provided that said data is stored in the format utilised 

by the system. This flexibility will provide health authorities with new ideas to tackle 

the problem and opportunities for both local and global benchmarking. Since hospitals 

and clinics are health authorities in small regions, they will be able to see all these 

benefits as well. Moreover, if the hospital integrates its patients' data into the system, 

once the necessary personal rights are defined, it can see the state of resistance in its 

small ecosystem and use the system as an early warning mechanism. Hospitals can 

develop general policies as well as hospital-specific prevention and intervention 

policies. Doctors and healthcare professionals will be able to make antibiotic choices 

through this system, and public health experts and epidemiologists will be able to 

analyze the effects of the spread of antibiotic use throughout the population and 

develop health policies accordingly. Pharmacists and the pharmaceutical industry will 

be able to contribute to the development of strategies to combat antibiotic resistance 

by providing data on drug use and antibiotic prescriptions.  

2.1.3 Possible opportunities  

2.1.3.1 Data integration and detailed health document sharing   

The system can monitor the spread of antibiotic resistance more comprehensively and 

in specific breakdowns (age, region, disease history, etc.) by ensuring regular 

collection and integration of data from different health institutions such as hospitals, 

clinics, public health organizations. This allows for more data sharing on antibiotic use 

and resistance and can create a strong collaborative environment between health 

systems. This can lead to more efficient and tailored decision-making across the 

healthcare sector. In addition, disease spread and resistance rates in different regions 

can be monitored more accurately. National data sharing can also provide an important 

opportunity to understand the societal impact of antibiotics and to tailor policies.  
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2.1.3.2 Policy development and improvement   

Health authorities can holistically view and test their current policies and the steps they 

intend to implement. In addition, with the diversification of data sources, policies in 

different countries can be adapted and supported each other. This, in turn, can create a 

global struggle environment and bring this problem, which is defined as a silent 

pandemic, under control. In addition, long-term solutions can be found by testing the 

effectiveness of strategies such as education programmes and antibiotic sales audits 

with the data of the system. Thus, decision support can be obtained from the system 

for continuous improvement of health policies.   

2.1.3.3 Early intervention and prevention methods  

The system monitors antibiotic resistance both regionally and in cases where it is 

customised, it can turn into specific alarm mechanisms. Here, by monitoring the spread 

of antibiotic resistance on the basis of hospitals, districts, provinces and even countries, 

measures can be taken by early detection of threats to public health when above certain 

threshold values. An important step can be taken to protect public health with early 

detection and treatment. Accurate simulation of infection dynamics and data-based 

early warning systems enable health professionals to intervene proactively and 

effectively. Thanks to the early detection of resistant infections, the spread of these 

infections can be prevented.  

2.1.4 Possible threats in the environment:  

2.1.4.1 Data security and privacy  

Health data are data that we can distinguish individuals and are in the sensitive data 

category. For this reason, if non-open source data is used, it is necessary to clean the 

data and use the necessary additional hiding methods. If the measures in this regard 

are not clearly stated, there may be mistrust in the system and problems may arise in 

data sharing. In addition, mismanaged data security can jeopardise patients' personal 

information. A serious threat here is data leaks, hacking attacks and misuse of personal 
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data. These problems can cause serious reputational losses and legal problems. 

Healthcare organisations may be concerned about data security and the widespread use 

of the system may be prevented.  

2.1.4.2 Data inadequacy and quality problems  

The amount of data required by the system is large for an accurate analysis. However, 

it can be difficult to find institutions or organisations willing to share health data, 

especially information whose existence creates a negative image, such as resistance. 

In addition, in some regions, data on antibiotic resistance or drug use are not available 

in a good quality and complete format. Incomplete data and low quality data may lead 

to wrong decisions and reduce the effectiveness of intervention strategies. The 

important thing here is to use data sources in a number and format suitable for 

generalisations to represent the region being studied and to process them correctly. In 

the next system development steps, this pilot application can be transferred to local 

organisations such as entire regions, countries or hospitals.  

2.1.4.3 Policy applicability and legal barriers  

All the policies we will test in our system are within the bounds of the law. This 

requires us to narrow our scope and sacrifice certain benefits. It is important to get 

them right and, if not, inaccurate recommendations may result, reducing the credibility 

of the system. Due to the obstacles encountered in implementation, effective 

intervention may not be achieved and the effectiveness of the system may be 

misinterpreted.   

2.1.4.4 Lack of technological infrastructure   

Problems such as lack of technological infrastructure and internet access may prevent 

widespread use of the system, especially in developing countries or rural areas. It may 

make data transfer and real-time monitoring difficult and limit the overall success of 

the system. In addition, since the health systems used in each country are different, 

there may be problems in integrating the system into these platforms.  
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2.1.5 Important elements of the system   

2.1.5.1 Data collection and management module   

The data of the system consists of open-source data shared from health systems, 

institutions such as WHO, infection and antibiotic usage data, AMR clinical microbial 

research data and AMR-induced death data. Obtaining, cleaning and formatting all 

these data into a format that can be given to the model and transforming the data 

without violating personal information constitute the data management module.  

2.1.5.2 Machine learning and data analytics  

With the collected data, resistance trends and predictions are created with machine 

learning algorithms. These data are used to predict the future effects of antibiotic 

resistance.  

2.1.5.3 Simulation and scenario modelling  

Multi-agent simulations aim to model the transmission dynamics and resistance 

development of resistant bacteria, so that policies can be tested in areas and at speeds 

that would be difficult to observe in reality.  

2.1.5.4 Policy optimization:  

In addition to different antibiotic use strategies, policies that are currently used in the 

world and considered useful, new solutions and measures can be tested with the 

information learned from the system and the response of the system can be measured.  

2.1.5.5 User interface and decision support module:  

Enables healthcare professionals to track antibiotic resistance, make the right treatment 

decisions and optimize antibiotic use. The interface provides an effective tool for long-

term policy development, data-driven strategies and effective intervention decisions. 

Hospital administrators and health authorities can use this interface for data-driven, 

inclusive and proactive solutions.  
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2.1.6 System constants  

2.1.6.1 Limit values for antibiotic resistance  

Certain levels of resistance to antibiotics are known as fixed. These are the limit values 

that determine how much resistance resistant bacteria show to which antibiotics. These 

constants define the effectiveness of antibiotics and what levels of resistance are 

clinically relevant. When deciding whether the antibiotic is effective, it is checked 

whether the level of resistance exceeds this constant value.  

2.1.6.2 Data standards and forms  

International health informatics standards such as HL7 and FHIR are considered fixed. 

Data should be collected in these formats and integrated into the system. These 

constants are necessary for the system to work in harmony with different health 

information systems.  

2.1.6.3 Antibiotic and bacteria relationship  

It has been determined which antibiotic is resistant to which bacteria. These constants 

will affect the antibiotic selection and antibiotic dosage to be applied while setting up 

the system.  

2.1.6.4 Antibiotic treatment periods and instructions for use  

These are the general standards for the use of antibiotics determined by health 

institutions. The system works based on fixed standards that determine which 

antibiotic will be used against which bacteria and under which conditions.  Antibiotic 

treatment times are set as a standard in a way to get the most efficiency, and the policies 

that our system will recommend should be determined by considering these. There are 

also restrictions and limits on the use of certain antibiotics. Antibiotics are also 

categorised and some of them can be restricted except for infections with a high risk 

of developing resistance, and these can be set as constants for the system.  

2.1.7 Parameters   
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2.1.7.1 Resistance rate  

Resistance rates refer to the rate of development of resistance to each antibiotic. This 

is a critical parameter used when analyzing the impact of antibiotics.  

2.1.7.2 Infection rate  

It is the parameter that shows the rate of spread of resistant bacteria. This rate varies 

depending on factors such as community structure and access to health services.  

2.1.7.3 Intensity of antibiotic use  

The intensity, duration and consumption amount of antibiotic use in the region where 

the system will be implemented.  

2.1.7.4 Bacterial Species and Prevalence:  

The prevalence of bacterial species is the distribution of bacterial species analyzed by 

the system, and the prevalence of these bacteria in hospitals depends on this 

parameter.  

2.1.7.5 Policy implement ability  

This is a measure of the applicability of the policies proposed by the system in the 

sector and in society. This parameter is used to analyze the effectiveness of the system.  

2.1.8 Performance indicators  

2.1.8.1 Spread prediction accuracy  

Measures how well the system's predictions match actual resistance rates.  

2.1.8.2 Policy effectiveness 

The reduction in resistance rates can be measured by indicators such as the change in 

the rate of spread of resistant infections.  
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2.1.8.3 User satisfaction 

The parameters of this indicator are user-friendliness of the interface, short training 

times and the decision support system producing accurate results. The trust of patients 

and doctors in the system can be evaluated within the scope of user satisfaction.   

2.1.8.4 Process Time Efficiency 

The indicator shows how well the optimization is done regarding the calculation time.   

2.1.8.5 Compatibility Rate of Simulation Results with Real Data 

It is to measure how compatible the simulation results are with real data.  

 Stakeholders of The System  

2.2.1 Hospitals and health institutions 

They are the main data sources and application areas of the system. They will directly 

use the system to develop antibiotic use policies, optimize infection control strategies 

and manage health resources more efficiently.  

2.2.2 Health professionals (physicians, clinical teams) 

This is another main stakeholder group that will directly benefit from the system 

outputs. It will be possible to make more accurate and faster decisions with antibiotic 

treatment strategies recommended in line with clinical data, patient history and 

antibiogram results. Optimizing the decision-making processes of these stakeholders 

will ease the psychological burden of their work. Since they can directly observe the 

effects in the system, they will increase optimization with feedback.  

2.2.3 Public health authorities and the ministry of health  

These stakeholders, who are responsible for formulating national policies to combat 

antibiotic resistance, will be able to develop more proactive and science-based 

strategies through regional resistance analyses and intervention simulations provided 
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by the system. A beneficial impact on public health will reduce costs and increase 

public trust in health systems. This directly serves the objectives of decision-makers.  

2.2.4 Epidemiologists and academics 

The simulation and modeling modules within the system will provide valuable inputs 

for academic analysis and scientific studies, and will constitute an important resource, 

especially in terms of spread modeling. Since the system serves an active problem, it 

can be reworked with changing conditions. This system can be adapted for different 

pandemics when desired.  

2.2.5 Society and patients (indirect stakeholders) 

The system will provide access to safer and more effective healthcare services, shorten 

treatment processes and reduce the burden on the healthcare system, thanks to the 

correct use of antibiotics and the reduction of resistant infections. This will reduce the 

loss of time and both psychological and physiological wear and tear faced by patients.  

2.2.6 Pharmacists and the pharmaceutical industry 

The pharmaceutical industry is a stakeholder that can both affect and be affected by 

the system. The system will be able to provide much more comprehensive results when 

drug sales and utilization data are added to the system from pharmaceutical companies. 

In addition, in line with the recommendations and outputs of the system, it can support 

antibiotic development studies and clinical research in the pharmaceutical industry.  

2.2.7 Purpose of the study and contributions to stakeholders 

The main objective of this study for stakeholders is to design a data-driven decision 

support system that will enable early detection of antibiotic resistance spread, test 

intervention strategies and support decisions. The system offers not only an analysis 

of the current situation, but also the possibility to predict future risks and optimize 

alternative scenarios. The main benefits to stakeholders include the ability of clinical 

staff to make safer and more accurate treatment decisions, hospitals to reduce costs by 

optimizing antibiotic use, and public authorities to develop more effective public 
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health policies. At the society level, there will be indirect but important public health 

improvements, such as increased treatment success, reduced rates of resistant 

infections and improved quality of access to healthcare services.  

2.2.8 Success criteria of the designed system  

The success of the designed system will be evaluated according to both technical and 

operational performance criteria. Technical success criteria include the predictions of 

the machine learning models are in a pattern compatible with historical data, the 

scenario reliability and realism of the simulation module, and the cost/effectiveness 

ratios of the optimization outputs. In addition, the computational and time efficiency 

of these models and algorithms will be measured and will be an important component 

in the success of the system. Operational success will be measured by user satisfaction, 

applicability of the system, level of contribution to decision makers and tangible 

improvements achieved in the health system. In addition, the level of integration of the 

system with existing health information systems and its active use by different 

stakeholders can also be evaluated among the success criteria.  

2.2.9 Product and service description to be designed  

The system will be designed in such a way that hospitals can access it from their 

computers, integrated into their health systems. There will be an interface where they 

can view diffusion maps, statistics and dashboards to facilitate the decision-making 

process and monitor diffusion. Algorithms that provide recommendations to determine 

antibiotic use on a regional group basis will be integrated into the system. The results 

of each policy will be visible in the system and its effects will be analyzed in detail. 

Due to its flexible, modular and expandable structure, clinical researchers will be able 

to easily use the system in their research.  
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 System Requirements  

The growing threat of antibiotic resistance on public health and health systems 

emphasizes the need for more analytical, predictive and systematic tools for decision-

making.  

2.3.1 Needs to be met  

• Data-driven clinical decision guidance: Supporting physicians to make the 

right choice of antibiotics.   

• Effective planning and evaluation of health policies: Enabling public 

authorities to plan interventions based on resistance trends.   

• Optimizing resource allocation and infection control: Ensure rational use of 

antibiotics in hospitals.   

• Develop early warning mechanisms: Detect increasing trends of resistant 

infections in advance and intervene in a timely manner.  

2.3.2 Design requirements  

• Data analysis capacity: Accurate processing and modeling of large and multi-

dimensional health data.   

• Forecasting capability: Future predictions of resistance levels and 

transmission risks.   

• Simulation module: A parametric and flexible model for testing intervention 

scenarios.   

• Optimization component: Comparison of intervention strategies in terms of 

cost, effectiveness and feasibility.   

• User-friendly interface: An intuitive, understandable and interactive system 

experience for clinical users and decision makers.   

• Privacy and ethical compliance: Anonymization and processing of patient 

data and compliance with relevant legal regulations.  
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In order for the designed system to work effectively and sustainably, some basic 

requirements, both technical and user-oriented, need to be met. First, the success of 

the system depends on its ability to reliably aggregate and manage very large datasets 

from different sources in the healthcare domain, which often contain irregular and 

personal data. Therefore, a strong technical infrastructure is needed. The system is 

expected to bring together different types of data and make them analyzable in the 

same module. In the prediction module, machine learning algorithms that can predict 

regional and temporal trends of antibiotic resistance based on historical data should be 

run. Accordingly, the system should have a structure where different machine learning 

methods can be tested. Future prediction based on past data will also be made. For this 

purpose, an agent-based simulation infrastructure to model transmission dynamics will 

be one of the important components of the system. Above all, considering that the 

system will work with patient data, utmost care must be taken in terms of data security. 

Therefore, it should be configured in accordance with both local (KVKK) and 

international (GDPR, HIPAA) data protection standards.  

 Constraints Directing Design  

Full compliance with ethical and legal regulations on the processing, storage and 

analysis of patient data is expected. Accordingly, anonymization techniques and 

access restrictions should be integrated into the system design. It is also anticipated 

that problems such as incomplete records, lack of standards and access restrictions 

may exist in health data. It should be taken into account that this may affect the 

accuracy of the prediction algorithms. From a technical point of view, since running 

simulation and optimization modules may require high computational power, it is 

recommended that the algorithms to be developed should be designed considering 

computational efficiency.   

Considering that end users may have limited technical background knowledge, the 

interface should be designed to be easy to understand and usable with little training. 

In addition, it is aimed to create a parametric and modular software architecture for the 
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model to be adaptable in different geographical regions or health systems. In order for 

the outputs of the system to be developed to be integrated with health information 

systems used in different countries (e.g. EHR - Electronic Health Records), it is 

important to comply with international health informatics standards (e.g. HL7, FHIR). 

Finally, it should be recognized as a fundamental requirement that system outputs 

should not generate false alarms and should be disclosable, auditable and transparent 

in order to avoid the risk of misdirection.  

 Professional standards to which the design is related  

Professional standards and legal regulations that are directly related to the design 

project are listed below. These standards specify requirements in critical areas such as 

system security, user privacy and data management.  

2.5.1 HIPAA (health insurance portability and accountability act)  

HIPAA, a regulation of the United States of America, is the reference for the protection 

of patient data. This law aims to ensure the security and privacy of individual health 

information. If the system works with personal data, it must be configured in 

compliance with HIPAA.  

2.5.2 GDPR (general data protection regulation)  

 

The General Data Protection Regulation (GDPR) set by the European Union 

establishes the legal framework for the processing and storage of personal data. This 

regulation sets standards that must be complied with in all processes related to the 

protection of personal data and the privacy of individuals.  

2.5.3 ISO/IEC 27001 - Information security management system standard  
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ISO/IEC 27001 is a globally recognized standard for ensuring information security. 

This standard specifies the necessary management procedures to ensure the security of 

all data flows.  

2.5.4 ISO 9241 - Human-Computer interaction standard  

 ISO 9241 is a standard for human-computer interaction and ergonomic interface 

design. According to this standard, an ergonomic and interactive interface should be 

designed so that users can easily use the system.  

2.5.5 IEEE Code of ethics  

 The IEEE Code of Ethics includes principles such as engineering ethics, benefiting 

society, reliability, integrity and user safety. This code of ethics will be considered 

during the system development process.  

2.5.6 WHO - Global Action Plan to Combat Antimicrobial Resistance  

 The World Health Organization's (WHO) Global Plan of Action against antibiotic 

resistance will be used as a reference for the system to develop policies and provide 

recommendations to combat antibiotic resistance.  

2.5.7 Personal Data Protection Authority (KVKK) 

 KVKK is a law that includes legal regulations for the protection of personal data in 

Turkey. This law provides the necessary measures for the protection and privacy of 

individuals' personal data.   
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 LITERATURE REVIEW  

 What is an Antibiotic?  

“An antibiotic is a chemical substance, produced by micro-organisms, which has the 

capacity to inhibit the growth of and even to destroy bacteria and other micro-

organisms.” (Waksman, 1947, p. 565). By its very nature, an antibiotic affects some 

micro-organisms and others not at all or in a limited way. Each antibiotic is therefore 

characterized by a unique antimicrobial spectrum.  

 What is Antibiotic Resistance?  

Antibiotic resistance occurs when a bacterium develops the ability to resist an 

antibiotic that is expected to harm it. Antibiotics can no longer kill the bacteria or stop 

their growth. This leads to untreatable infections and increases the risk of death. 

Antibiotic resistance can occur in three forms:   

• Intrinsic (Natural) Resistance: This is when some bacteria are naturally 

resistant to some antibiotics.  

• Resistance due to environmental conditions: Although antibiotics seem to be 

effective in the clinical setting, they may not be effective depending on 

environmental factors in the human body. Some of these factors include low 

oxygen, pH change or inability to cross the blood-brain barrier.  

• Acquired Resistance: This is currently the most common form of resistance 

that can be fought. Bacteria acquire resistance through DNA mutations or by 

acquiring genes from outside. Acquired resistance mechanisms are also divided 

into four groups. These are preventing the drug from working by changing its 

target, inactivating the drug by degrading it with enzymes, preventing the entry of 

the drug into cells by reducing membrane permeability, and inactivating the drug 

by overproduction of target structures.  
 

Antibiotic resistance is usually treated with drugs that are more expensive, more toxic 

and less accessible than antibiotics normally prescribed. This leads to an increase in 
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side effects and makes treatment longer and more costly. Despite all this, in some 

cases, none of the new drugs work.  

 Causes of Antibiotic Resistance   

 There are many reasons for antibiotic resistance. These include uncontrolled drug use, 

which is frequently mentioned in articles, financial-oriented drug policies of the 

pharmaceutical industry and widespread use of antibiotics in the food industry. In 

addition, unconscious and non-prescription use of antibiotics also causes antibiotic 

resistance to spread rapidly. It is also known that resistance rates are higher especially 

in areas where antibiotic use is high, such as hospitals. Therefore, hospitals are one of 

the most critical components in system design. Not only medical measures but also 

awareness raising and measures in the food sector play a critical role in combating 

antibiotic resistance. This is the reason why a holistic perspective, data-driven 

approach, multidisciplinary and sustainable practices are included in system design.  

 Why Combating Antibiotic Resistance is Critical?  

In September 2016, heads of state and government gathered at the UN in New York 

adopted a groundbreaking Political Declaration on Antimicrobial Resistance (AMR), 

recognizing that antibiotic resistance is the “greatest and most urgent global risk” and 

that many achievements of the 20th century, particularly the reduction of morbidity 

and mortality from infectious diseases, are seriously threatened by AMR (Khor, 2018). 

In addition, recent studies and extensive research emphasize that antibiotic resistance 

is not only a medical issue but also an economic, social and environmental problem. It 

is also explained that this resistance has become the biggest public health threat 

worldwide, as it is accelerating day by day and solutions are difficult. As Khor (2018) 

states in his book, especially developing countries have become more susceptible to 

this crisis due to the lack of regulatory structure, uncontrolled prescription systems and 

inadequate public health investments.  

Bacterial AMR is estimated to be directly responsible for 1.27 million global deaths 

and contributed to 4.95 million deaths in 2019, according to the World Health 
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Organization. Furthermore, the World Bank estimates that AMR could lead to 

additional healthcare costs of US€1 trillion by 2050 and gross domestic product (GDP) 

losses of US€1 trillion to US€3.4 trillion per year by 2030. This shows that the 

economic and social dimensions of antibiotic resistance can also be very severe and 

the importance of combating it in these areas. The cost- and feasibility-optimized 

control and prevention policies in system design also serve to solve this important 

problem.  

 

Figure 3.4.1 Projected global trade loss under high-AMR scenarios. Adapted from  Drug-resistant 
infections: A threat to our economic future (World Bank, 2017). 

 

As seen in the graph, it shows the long-term impact of antimicrobial resistance (AMR) 

on global trade. In the high AMR scenario, world exports decline by more than 3% by 

2050, while in the low AMR scenario the decline is limited. This shows that fighting 

antibiotic resistance is important for both health and the economy. 

The effect of AMR on livestock production is even more important. In low-income 

countries, livestock production is expected to drop by as much as 11%. This will put 

millions of people's lives at risk, as they depend on livestock for their livelihoods. 
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(World Bank, 2017)  

The OECD's 2023 report also says that resistant infections kill about 79,000 people 

each year in OECD and EU/EEA countries. This number is 2.4 times the total number 

of deaths from tuberculosis, influenza, and HIV/AIDS in 2020. The majority of these 

deaths are caused by resistant infections acquired during healthcare and account for 

60% of all AMR-related deaths.   

The treatment of resistant infections results in an additional annual cost of US€28.9 

billion (adjusted for purchasing power parity) to healthcare systems. In particular, the 

additional 32.5 million days spent in hospital each year due to these infections is 

equivalent to a country (such as Spain) having its entire acute bed capacity fully 

occupied for a year.  

The impact on the workforce is also significant. AMR causes annual losses in 

workforce participation and productivity amounting to 36.9 billion US dollars. This is 

roughly equivalent to one-fifth of Portugal's gross domestic product in 2020. On 

average, 734,000 full-time equivalent jobs are lost each year, 84% of which are due to 

reduced labor force participation. (OECD, 2023) 
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Figure 3.4.2 Annual job losses, absenteeism and presenteeism up to 2050. 

The “replacement” and “elimination” scenarios shown in the figure represent different 

outcomes in the fight against antimicrobial resistance (AMR). The replacement  

 Smart Antibiotic Use in Combating Antibiotic Resistance    

One of the most important elements of combating antibiotic resistance is rational drug 

use. Health authorities use policies such as prohibition of over-the-counter drug sales, 
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national action plans, awareness-raising guides for healthcare professionals, setting up 

antibiotic committees within hospitals and public education campaigns for rational 

drug use.  

 Key Data for Antibiotic Resistance Modeling   

Some of the data required for the detection and control of antibiotic resistance that can 

be used in system design and modules were identified through literature reviews. 

These are:   

• Medical data: Antibiogram data (bacterial species, antibiotics, sensitivity 

status), patient data, clinical data   

• Environmental and Social Data: Regional resistance rates and social factors, 

data on food production and consumption, current laws and regulations on 

antibiotic use.   

 Trend Forecasting of the Spread of Antibiotic Resistance    

Studies on predicting antibiotic resistance have gained significant momentum, 

especially in recent years, thanks to the opportunities offered by machine learning 

techniques. Many studies in the literature show that highly accurate prediction models 

can be developed using both clinical and genetic data (e.g. whole genome sequencing, 

k-mer profiles). In this way, antimicrobial resistance trends can be predicted in a way 

that not only analyzes the current situation but also contributes to the formulation of 

proactive health policies for the future.  

Wang et al. (2023) stated that the models they made for Acinetobacter baumannii 

isolates had an average prediction accuracy of 94–97% for different antibiotics. In this 

research, k-mer-based feature extraction was integrated with algorithms like Random 

Forest, yielding results in a shorter timeframe than conventional resistance tests. In 

another study, Ren et al. (2022) evaluated four different algorithms developed for E. 

coli isolates and found that Random Forest and deep learning methods were generally 
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more successful. In addition, the fact that these models can work without depending 

only on known resistance genes shows the potential to reveal previously unidentified 

resistance mechanisms.  

 Use of Markov-Type Cohort Model and Dynamic Compartmental Model  

 

In the health literature, simulation-based approaches are frequently used to assess the 

long-term effects of infectious disease policies under conditions of uncertainty. In this 

project, we adopted a hybrid modeling framework that combines a Markov-type cohort 

model with a Dynamic Compartment Model (DCM) to comprehensively evaluate 

antimicrobial resistance (AMR) policies, allowing us to observe two different model 

outcomes. This dual approach allows the model to capture both population-level 

epidemiological transitions and the fundamental biological mechanisms driving 

resistance dynamics. 

The Markov-type cohort model represents long-term transitions between health states 

over separate annual cycles. Using incidence rates, resistance rates, mortality rates, 

and annual cost and benefit values, it derives aggregate outcomes such as total number 

of infections, number of deaths, annual QALYs, and total costs under each policy 

scenario. This model is compatible with standard health economics evaluation 

practices and facilitates comparisons between countries through adaptable AMR 

burden categories. The Markov approach is particularly suitable for long-term cost-

effectiveness analysis and clearly quantifies increasing costs, increasing QALYs, and 

ICER values for policy decisions. 

In contrast, the Dynamic Compartment Model (DCM) captures the biological and 

epidemiological mechanisms underlying AMR transmission using a continuous-time 

differential equation system. The model simulates colonization, progression of 

infection, resistance selection, recovery, and mortality on a daily time scale, producing 

mechanical trajectories for susceptible and resistant infections. Unlike Markov models 

that summarize annual transitions, DCM also reflects short-term fluctuations in 

pathogen dynamics and antibiotic-related selection pressure. DCM outputs can also be 
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converted into economic metrics; these calculations rely on a separate set of state-

based benefit and cost parameters specific to the dynamic model. 

The coexistence of these two independent models enhances the analytical flexibility 

of the study and allows decision-makers to evaluate AMR policies using a biologically 

grounded dynamic transmission model. 

 Industrial engineering techniques used in the design  

3.9.1 Operations research (OR)  

Operations Research (OR) is critical in addressing multifaceted problems such as 

antibiotic resistance and in the development of decision support systems. Since factors 

such as antibiotic use, resistance development and health policies are interlinked, 

effective planning becomes important. Therefore, cost and effectiveness analysis 

becomes an important tool to guide health authorities towards optimal antibiotic 

strategies. OR provides mathematical models that facilitate the efficient allocation of 

system resources. These models provide assessments to identify strategies that not only 

reduce antibiotic use but also reduce resistance rates. When dealing with complex and 

branching problems such as antibiotic resistance, OR techniques offer a significant 

advantage in identifying optimal solutions from both an economic and public health 

perspective. OR can thus be used to improve policy optimization and resource 

management. 

3.9.2 System simulation  

Systems simulation is used to analyse transmission dynamics and assess the possible 

outcomes of many different intervention scenarios. Due to the time-varying, 

multidimensional and complex nature of antibiotic resistance, simulation enables 

understanding the effects of policy changes and the spread of resistant bacteria over 

time. This approach allows stakeholders to observe and test the possible outcomes of 

planned interventions before they are implemented. Furthermore, simulation helps to 
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understand the interaction between the behaviour of individuals and antibiotic 

resistance, providing a valuable asset for predictive modelling and strategic planning. 

3.9.3 Machine learning  

 
Machine learning and data analytics are essential components of the design. These 

models can generate predictive insights into antibiotic resistance patterns by analyzing 

large and complex datasets. These models can identify which antibiotics are associated 

with resistance in particular bacterial strains, offering a clearer understanding of the 

current landscape. This predictive models empowers health systems to respond 

proactively to emerging threats. 

3.9.4 Data visualization  

Data visualization is essential for communicating the outcomes of analytical models. 

Complex data related to antibiotic resistance can be presented accessibly and visually 

by using tools such as graphs, maps, and interactive dashboards. These visualization 

techniques improves the intelligibility of analytical findings, enabling stakeholders to 

interpret results quickly and act accordingly.  

3.9.5 System dynamics  

In managing antibiotic resistance and shaping health policies, it is insufficient to rely 

solely on static data. A system dynamics perspective, which incorporates feedback 

loops, actor interactions, and temporal changes, is essential for developing realistic 

and sustainable policy interventions. System dynamics approach improves a deeper 

understanding of not only the medical aspects but also the social, environmental, and 

governance dimensions of the healthcare system. By analyzing the dynamic and nature 

of antibiotic resistance, system dynamics contributes to the formulation of more 

holistic and long-term solutions. 
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 METHODOLOGY  

 

This chapter describes the methodology for developing a data-driven decision support 

system to reduce the spread of antibiotic resistance. The decision support system 

assists health authorities in evaluating effective policy options and is designed to 

simulate and compare different intervention strategies using industrial engineering 

techniques. 

 General Methodological Framework  

The development process was built on four main methodological layers:  

• Problem Definition and Stakeholder Analysis  

• Determination and Operationalization of Policy Set  

• Model Design and Tool Integration  

• Scenario Simulation and Evaluation  

Figure 4.1 shows the preliminary preparation phases before starting the modeling 

process. In this phase, the scope of the system and key stakeholders were first defined. 

Then, data provided by health authorities were collected and preprocessed to make 

them suitable for modeling. Following the data cleaning and standardization process, 

feasible policy scenarios were pre-selected based on literature review and expert 

opinions. In the final step, data sources were organized by matching them with policies 

so that the selected policies could be used in the modeling. This structure ensures that 

the decision support system to be developed in the following chapters is based on a 

data-driven and consistent foundation.  
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Figure 4.1.1 Flowchart of pre-modelling the system. 

 Policy Scope and Rationale for Selection  

The project focused on policies that could be integrated into the system modeling, as 

well as those that have applicability and clinical validity in the field. Certain criteria 

were taken into account in the policy pre-selection process. First, policies with 

demonstrated clinical efficacy in the literature and recommended by institutions 

(WHO, CDC, etc.) were preferred. The ability to integrate the selected policies into 

the system model in a data-driven manner was taken into consideration. In addition, 

policies that are compatible with technological and organizational infrastructures, 

which can be integrated into the Turkish health system or similar structures, were 

prioritized.  

In this context, the following seven policy proposals were selected and considered for 

scenario- based testing in the system model:  
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4.2.1 Risk-Based Antibiotic Prescribing Protocols  

These are protocols that guide antibiotic prescribing based on patient-specific risk 

factors such as age, immune status and hospital history. This approach encourages 

more controlled intervention in high-risk individuals and non-antibiotic solutions in 

low-risk individuals.  

4.2.2 Personalized Knowledge Support Systems (KSS)  

Digital systems that support physicians' decision-making processes and provide 

prescription recommendations by combining patient data and local resistance data. It 

aims to provide a fast and standardized decision process in line with clinical 

guidelines.  

4.2.3 Prescribing Based on WHO AWaRe Classification  

Based on the AWaRe (Access-Watch-Reserve) antibiotic classification developed by 

the WHO, it encourages the use of antibiotics primarily in the 'Access' group. 

Uncontrolled spread is reduced by keeping resistant antibiotics in the 'Reserve' group.  

4.2.4 Personalized Antibiograms and ML-Assisted Prescribing  

By analyzing the antibiograms generated according to the source of infection of each 

patient with machine learning algorithms, the most appropriate antibiotic is selected 

for each patient. This model provides fast decision making and high accuracy.  

4.2.5 Combined Use of ML and Physician Decisions  

It is based on the principle that machine learning systems only provide suggestions to 

the decision maker and the physician makes the final decision. This way, both data-

based recommendations are utilized and human intuition is kept in the loop.  
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4.2.6 Antibiotic Resistance Prediction with ML  

Proactive prescribing can be achieved by developing ML models that predict whether 

bacteria will develop resistance to certain antibiotics in specific regions. This is 

particularly useful in regions where access to rapid testing is limited.  

4.2.7 ML Based Prescribing with Genomic Data  

By analyzing the genetic sequences of bacteria to detect resistance genes and 

interpreting these data with ML algorithms, antibiotic selection can be made with high 

precision. It is an advanced and future-oriented strategy for advanced systems.  

4.2.8 Antibiotics Subscription Model like Netflix  

To support the development of new antibiotics, the National Health Service (NHS) in 

England proposes a subscription-based payment methodology. This is a method where 

payment is independent of the amount of use. Just as Netflix offers access to all content 

for a fixed monthly fee, in this model governments or health systems pay 

pharmaceutical companies a fixed fee (subscription) to develop and provide access to 

antibiotics. This raises a number of beneficial issues. First, the use of antibiotics may 

decrease because companies do not make much money when they sell more, so they 

do not try to sell more than is needed. Second, the main reason why firms are afraid to 

do R&D on new antibiotics is that they think that these special antibiotics are mostly 

unused and they cannot recoup their investment in the development process through 

sales. The other is that the company feels more secure with this method because they 

know the money they will receive and it will be easier for them to make investment 

decisions and control their budget.  

4.2.9 Innovation and Conservation Fee Model  

This model applies to all sectors that use antibiotics for humans and animals. For 

example, hospitals, farms, animal clinics, agricultural companies, etc. The fee depends 

on the amount of antibiotic use. So the goal is to reduce antibiotic use because the 

more antibiotics you use, the more you pay. The aim is to use 75% of the fee income 
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for the development of new antibiotics and 25% for public health and awareness-

raising activities.  

4.2.10 Reimbursement Model for Narrow Spectrum Antibiotic Development  

This model aims to incentivize the development of antibiotics. There are two different 

payment types in the model:  

• Fixed Reimbursement: If the antibiotic is approved, the developer of the 

antibiotic receives this reimbursement. This is for R&D costs coverage.  

• Variable Payback: This variable payback is approximately 2 parameters.  

o Bonus for Use Against Resistance: Payment is increased only when the 

antibiotic is used against resistant pathogens.  

o Inappropriate Use Deduction: Payment is reduced if the drug is used in 

susceptible (non-resistant) cases.  

4.2.11 Intervention Model for Reducing CRKP Spread at Hospital Level  

CRKP (Carbapenem-resistant Klebsiella pneumoniae bacteria).    

This model simulates the spread of infection by looking at the interaction between 

healthcare workers and patients. It addresses it on 3 different bases:  

• Reduce contact between health workers (e.g., shift arrangements)  

• Improving hand hygiene compliance,  

• Increasing patient isolation rates.  

The importance of testing this model is that it can be used to test the effectiveness of 

non-antibiotic measures against antibiotic resistance in the World Health 

Organization's critical priority threat list. This could be a preventive strategy that 

indirectly contributes to reducing antibiotic use.  
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4.2.12 The One Health Approach and the Use of an Environmental AMR 

Tracking System  

AMR is not only a clinical problem. Antibiotic residues can cause resistance to be 

carried into the environment. Likewise, animals, waste and plants can transmit 

resistant bacteria to humans. This policy recommends collecting and tracking data 

from the environment through samples and starting to control from there.  

4.2.13 A Nonprofit Drug Development Model:  

In this model, it is argued that the development of new antibiotics in non-profit 

organizations would be beneficial for public health. Nonprofit organizations such as 

the Global Antibiotic Research and Development Partnership (GARDP) are thought 

to be able to develop drugs that may not be commercially profitable but may provide 

treatment for resistant bacteria.  

 Plan of Tools and Methods Used  

The following industrial engineering techniques were used in the realization of the 

project:  

· Stakeholder Analysis: Identify and prioritize system actors.  

· Simulation Modeling (Python): Modeling the dynamic effects of intervention 

scenarios.  

· Decision Trees: Representing individualized treatment pathways.  

· Machine Learning (Python, Scikit-Learn, XGBoost): Supporting resistance 

prediction and treatment decisions.  

· Multi-Criteria Decision Analysis (MCDA): Policy prioritization  

· Sensitivity and Scenario Analysis: Test the robustness of proposals in different 

conditions.  

· Optimization: Choosing the most effective policy mix with limited resources.  
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 Data Sources and Preprocessing  

One of the main data sources of the study is national resistance surveillance data. These 

data are critical for policy scenarios such as AWaRe classification-based prescribing 

and risk-based protocols, as they show the rates of antibiotic resistance in specific 

regions. It has also been used to generate regional risk distribution in antibiotic 

resistance prediction models with ML.  

In addition, hospital-based infection and prescription data directly informs patient 

transactions. Information such as which antibiotics are prescribed, how often they are 

prescribed and against which types of infections is the building block of personalized 

information support systems (ISS), ML-assisted prescribing, physician-decision 

support integrations and risk-based prescribing models.  

Microbiological antibiogram records are detailed laboratory data that show, on a 

patient-by-patient basis, to which antibiotics the bacteria causing the infection are 

susceptible or resistant. Such data is used as direct model input, especially for policies 

such as personalized antibiograms, resistance prediction with ML and physician-

decision support collaboration.  

Demographic and clinical metadata is also an important component. Patient 

information such as age, gender, hospitalization history, immune status are used in risk 

classification for risk-based prescribing, CSR and individual-based machine learning 

models. This data enables decision models to differentiate patient-specific decision 

models.  

Finally, genomic sequence data enables the direct detection of resistance genes based 

on DNA analysis of bacteria. Especially in the ML-based prescribing scenario with 

genomic data, these data are used to provide highly accurate antibiotic 

recommendations based on diagnosis. It also serves as supporting data for training 

resistance prediction models with laboratory-based genomic analysis.  
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All these data sources form the basis of the decision support system developed within 

the project and are subjected to pre-processing steps in accordance with the data 

structure required by each selected policy scenario.  

 

Figure 4.4.1 Flowchart of the Data Processing Pipeline. 
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 Scenario Development and Simulation Application  

4.5.1 Markov-Type Cohort Model for AMR Policy Evaluation 

When examining studies involving policy simulation in the health sector, we observed 

that the effects of the Markov model were evaluated based on life expectancy and cost. 

Studies in this field were developed for AMR. The parameters, the steady-state 

conditions, and the transitions were also defined specifically for this problem. 

The model estimates the effects of different policy packages over a specific time 

horizon on: 

• bloodstream infection (BSI) incidence 

• the proportion of resistant infections 

• the number of sepsis-related deaths 

• health system costs 

• quality-adjusted life years (QALY) 

The primary objective of the model is to compare the “no intervention” scenario with 

various antibiotic usage and infection control policies in the adult population and to 

calculate the additional cost, additional QALY (Quality-Adjusted Life Year) gain, and 

number of deaths prevented for each policy. A QALY is 1 year of life lived in perfect 

health. 

The model is divided into three categories for adaptivity to different countries. Based 

on EDCD reports, each country will be able to categorize itself. Thus, there are three 

categories: Low AMR for relatively low resistance burden, Mid AMR for moderate 

resistance burden, High AMR for high resistance and mortality burden. The model can 

also be simulated with different parameters for each different group. 

A time horizon of short term selects as 1 year and long term is 10 years. But user have 

a chance to change term in 1, 5, 10 and 20 years. In compliance with economic 

evaluation standards, an annual discount rate of 3% was used for future costs and 

QALYs, as in other literature models about health. Since death counts were reported 



 

36 

as absolute event numbers, no discount was applied. The model's cycle length is 1 

year, consistent with global parameter reporting.  

Conceptually, individuals may be in one of the following health states: 

• Infection-free (healthy individual at risk) 

• BSI with susceptible strain 

• BSI with resistant strain  

• Death 

Transition probabilities in the model are provided by parameters that can be obtained 

from reports. Thus, the numbers for transitions from one state to another can be 

calculated using these formulas. 

The following values are calculated for each year: 

• 𝑁!: number of individuals alive at the beginning of the year 

• 𝜆inf: annual sepsis/BSI incidence (by person): The probability of a person 

developing sepsis/bloodstream infection within a year 

• 𝑝res: resistant infection rate 

• 𝐶𝐹𝑅": case fatality rate for susceptible infections 

• 𝐶𝐹𝑅#: case fatality rate for resistant infections 

Total number of infections: 

inf_cases! = 𝑁! ⋅ 𝜆inf	 (1) 

  

Resistant/sensitive distribution of these cases: 

𝑅! = inf_cases! ⋅ 𝑝res					𝑆! = inf_cases! − 𝑅!	 (2)	

𝑅!: Number of resistant infections 

𝑆!: Number of susceptible infections 
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Number of deaths: 

deaths! = 𝑆! ⋅ 𝐶𝐹𝑅" + 𝑅! ⋅ 𝐶𝐹𝑅# 	 (3) 

Population living the following year: 

𝑁!$% = max(𝑁! − deaths! , 0) (4) 

Total Cost: 

The total cost for each year consists of the following components: 

• Case costs 

• Sensitive infection case cost: 𝑐" 

• Resistant infection case cost: 𝑐& 

• Policy/program cost 

Annual fixed cost for implementing the relevant policy: 

cost! = 𝑆! ⋅ 𝑐" + 𝑅! ⋅ 𝑐# + 𝐶fixed
(policy)	 (5) 

Annual quality of life for infection-free adults: 𝑢base 

Additional QALY losses for susceptible/resistant infections: 

• Δ𝑢": QALY loss per susceptible BSI  

• Δ𝑢#: QALY loss per resistant BSI 

QALYs gained in one year: 

QALY! = (𝑁! − deaths!) ⋅ 𝑢base − 𝑆! ⋅ Δ𝑢" − 𝑅! ⋅ Δ𝑢# 	 (6) 

Integration of Policies into the Model 

Each policy is defined using multipliers with model parameters.  

• 𝑚inc: factor reducing the incidence of infection 

• 𝑚)res: factor reducing the proportion of resistant cases 

• 𝑚*+#!: factor reducing the case fatality rate of resistant cases 
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• 𝑚," , 𝑚,!: factors increasing/decreasing costs per case 

• 𝐶fixed: policy-specific annual fixed cost 

When the policy is implemented, the effective parameters are updated as follows: 

𝜆inf
(policy) = 𝜆inf

(base) ⋅ 𝑚inc	 (7) 

 

𝑝res
(policy) = 𝑝res

(base) ⋅ 𝑚)res 	 (8) 

 

𝐶𝐹𝑅#
(policy) = 𝐶𝐹𝑅#

(base) ⋅ 𝑚*+#! 	 (9) 

 

𝑐"
(policy) = 𝑐"

(base) ⋅ 𝑚," , 𝑐#
(policy) = 𝑐#

(base) ⋅ 𝑚,! 	 (10) 

 

Risk-based + AWaRe Policies: 

The WHO's AWaRe classification divides antibiotics into three groups:  

Access: Narrow-spectrum antibiotics commonly used in primary care with a lower risk 

of resistance  

Watch: Broader-spectrum antibiotics that have a higher risk of resistance development 

Reserve: Drugs that should be saved as a last option for highly resistant pathogens.  

The WHO emphasizes that the Access group should dominate national consumption 

as follows: “Access group antibiotics should be at least 60% of overall national 

antibiotic consumption.” Thus, when this policy is used, it reduces 

inappropriate/broad-spectrum prescriptions and reports an approximately 10–30% 

decrease in total broad-spectrum use. This also reduces the proportion of resistant 

cases in the model. Thus, 𝑚)res< 1. More accurate prescriptions reduce hospital-

acquired infections to some extent. And 𝑚inc< 1. Since these policies will also have a 

cost, the fixed cost increases. Based on the literature, we can use in our model that 
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there will be about 10–20% fewer resistant cases and about 5–10% lower total 

incidence. 

 

KSS / ML Decision Support Policies:  

It significantly reduces inappropriate initial treatment. 𝑚)res is lower. It reduces 

mortality in resistant cases. 𝑚*+#!<1, but it results in higher fixed cost or additional 

case costs due to IT investment and test usage. In Ribers & Ullrich's (2019) ML study 

for primary care: “Machine learning can reduce antibiotic use by 7.42 percent without 

reducing the number of treated bacterial infections.” Other studies like this generally 

report 5–15 percent less antibiotic use and higher appropriateness rates. Therefore, in 

the model, we adjusted the KSS/ML policy to be one level more effective than 

Risk+AWaRe. 

Infection control Policies: 

Hand hygiene, isolation, contact prevention measures are the policies that most 

strongly reduce infection rates. 𝑚inc< is smallest, secondary decrease in resistance rate 

𝑚)res ≤ 1. Studies report a 30% to 50% reduction in incidence during CRE/CRKP 

epidemics. Particularly in cases of intense infection control packages, a dramatic 

decrease in the number of new cases has been shown. Therefore, using the sharpest 

𝑚inc< (0.6–0.7 band) in the model for the infection control package is consistent with 

the high effect sizes in the literature. 

One Health + Environmental monitoring Policies:  

Human, animal, environment holistic approach both 𝜆infand 𝑚)res decrease, but fixed 

costs are high due to environmental monitoring and laboratory infrastructure. ECDC 

and WHO emphasize that resistant bacteria are transmitted to humans through animal 

farming, the food chain, and water/waste, and that restricting antibiotic use in these 

areas also reduces human infections. This policy demonstrates that incidence and 

resistance rates can be reduced over time. 
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Netflix-like subscription model: 

Revenue decreases based on usage volume, motivation for excessive usage weakens. 

𝑚)res < 1 and faced high fixed subscription cost. In contrast, there may be a slight 

decrease in the unit cost of drugs. The subscription approach introduced by the UK's 

NHS aims to prevent companies from trying to sell more drugs by offering a fixed 

payment independent of volume. WHO and OECD reports also show that this model 

could support a more reasonable usage volume in terms of resistance development 

while promoting R&D. However, the fact that it creates a significant fixed cost on the 

budget in the short term is also an important parameter for the model. 

Innovation & narrow spectrum & nonprofit R&D: 

Narrow spectrum and targeted new agents reduced resistance development and 

reduced mortality in resistant cases. (𝑚)res 	<1, 𝑚*+#! <1). High cost and Cr due to 

R&D and new drug costs. Nonprofit models such as GARDP and pull incentives are 

proposed in the literature to boost the development of new agents against critical 

pathogens, while also using these agents in a targeted and controlled manner to 

maintain long term effectiveness. Therefore, in the model, Innovation & nonprofit 

policy is assigned a strong long term health gain but a high-cost profile. 

Population in the following year: 

𝑁!$% = max(𝑁! − deaths! ,  0) (11)	

 

The basic cost-effectiveness measure is the incremental cost-effectiveness ratio 

(ICER):  

𝐼𝐶𝐸𝑅 =
ΔCost
ΔQALY 	

(12) 

ΔCost= Policy – Status quo cost difference 

ΔQALY= Policy – Status quo QALY difference. 

Δ“QALY” >0, the policy is considered both cheaper and more effective  
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If the ICER value is positive, it can be interpreted by comparing it with acceptable 

threshold values for the health system (e.g., 20,000–50,000 €/QALY). 

Net Monetary Benefit (NMB) : 

NMB = (WTP × ΔQALY) − ΔCost	 (13) 

4.5.2 Dynamic Compartmental Model (DCM) for AMR Simulation 

In this study, a Dynamic Compartmental Model (DCM) was developed to 

mechanistically represent the spread of antimicrobial resistance (AMR)-associated 

infections within a population, their changes over time, and resistance selection. The 

DCM aims to directly capture the biological and epidemiological dynamics of AMR 

by modeling infection and colonization processes through a continuous-time 

differential equation system. This structure allows for a more accurate assessment of 

the effects of factors driving the emergence of resistant pathogens, infection burden, 

and antibiotic use pressure on the population. 

DCM is designed to mechanistically model the following components: 

• acquisition of susceptible and resistant colonization 

• antibiotic-associated resistance selection 

• progression from colonization to active infection 

• clinical course differences between resistant and susceptible infections 

• recovery and transient immunity 

• infection-related mortality 

The total population ensures the following with the formula: 

𝑁(𝑡)  =  𝑆(𝑡)  +  𝐶"(𝑡)  +  𝐶#(𝑡)  +  𝐼"(𝑡)  +  𝐼#(𝑡)  +  𝑅(𝑡)	 (14) 
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Model Structure and Compartments 

The DCM divides the adult population into seven mutually exclusive compartments 

representing colonization, infection, recovery, and mortality states. Individuals move 

between these states according to biologically motivated transition rates: 

• S: Susceptible (uncolonized, healthy) 

• CS: Colonized with susceptible strains 

• CR: Colonized with resistant strains 

• IS: Active bloodstream infection (susceptible strain) 

• IR: Active bloodstream infection (resistant strain) 

• R: Recovered from infection (temporary immunity) 

• D: Death (absorbing state) 

The total population at any time satisfies: 

𝑁(𝑡) = 	𝑆	 +	𝐶" +	𝐶# +	𝐼" +	𝐼# + 	𝑅	 (15) 

Transition Dynamics 

Transitions between compartments occur continuously and are governed by rate 

parameters obtained from clinical and epidemiological literature. Key rates include: 

• κS, κR – acquisition of susceptible/resistant colonization 

• αC – conversion from susceptible-colonized to resistant-colonized (selection 

pressure) 

• ρS, ρR – progression from colonization to infection 

• αI – conversion from susceptible infection to resistant infection 

• γS, γR – recovery rates 

• μS, μR – mortality rates 

• ω – waning immunity / return to susceptibility 
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The full system of ODEs is: 

𝑑𝑆
𝑑𝑡

= 	−(𝜅𝑆	 + 	𝜅𝑅) · 𝑆	 + 	𝜔 · 𝑅	 (16) 

𝑑𝐶"
𝑑𝑡

= 	𝜅𝑆 · 𝑆	 −	(𝜌𝑆	 + 	𝛼𝐶) · 𝐶"	 (17) 

𝑑𝐶#
𝑑𝑡

= 	𝜅𝑅 · 𝑆	 + 	𝛼𝐶 · 𝐶" − 	𝜌𝑅 · 𝐶# 	 (18) 

𝑑𝐼"
𝑑𝑡

= 	𝜌𝑆 · 𝐶" −	(𝛾𝑆	 + 	𝜇𝑆	 + 	𝛼𝐼) · 𝐼"	 (19) 

𝑑𝐼#
𝑑𝑡

= 	𝜌𝑅 · 𝐶# + 	𝛼𝐼 · 𝐼" −	(𝛾𝑅	 + 	𝜇𝑅) · 𝐼# 	 (20) 

𝑑𝑅
𝑑𝑡

= 	𝛾𝑆 · 𝐼" + 	𝛾𝑅 · 𝐼# − 	𝜔 · 𝑅	 (21) 

𝑑𝐷
𝑑𝑡

= 	𝜇𝑆 · 𝐼" + 	𝜇𝑅 · 𝐼# 	 (22) 

Numerical Analysis 

The model was solved numerically using the Euler method with a daily time step to 

make the continuous-time differential equations solvable: 

𝑋(𝑡 + Δ𝑡) = 𝑋(𝑡) +
𝑑𝑋
𝑑𝑡
 Δ𝑡	 (23) 

Δ𝑡 =
1
365	

(24) 

This analysis allows for detailed monitoring of changes in resistance dynamics 

throughout the year. 
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Integration of Policy Effects into the Model 

The effect of policies aimed at reducing antibiotic use on resistance dynamics has been 

applied to three key parameters associated with reduced antibiotic pressure: 

𝜅#
)-./,0 = 𝜅#(1 − 𝑟)	 (25) 

𝛼*
)-./,0 = 𝛼*(1 − 𝑟)	 (26) 

𝛼1
)-./,0 = 𝛼1(1 − 𝑟)	 (27) 

where r is the percentage reduction in antibiotic exposure. 

Model Outputs 

At each simulation step, the model produces: 

• Incidence of susceptible and resistant infections 

• Cumulative resistant burden 

• Sepsis-related mortality 

• Recovered population size 

• Total population over time  

These dynamic outputs feed directly into the economic model to compute: 

• total cost 

• total QALYs 

• incremental cost-effectiveness ratio (ICER) 

• number of deaths prevented 

Thus, the DCM provides mechanistic epidemiological realism, which strengthens the 

validity of the cost-effectiveness results. 
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Integration of DCM Outputs into the Economic Model 

The infection, colonization, and mortality flows obtained from the dynamic model are 

then transferred to the cost-effectiveness analysis (CEA). At this stage: 

• unit costs for each infection type, 

• utility values for each health state, 

• program costs 

are used to calculate total cost, total QALY, and ICER. 

This structure allows epidemiological processes to be directly integrated with 

economic outputs. 

QALY calculation: 

𝑄(𝑡) = 𝑢"𝑆(𝑡) + 𝑢*"𝐶"(𝑡) + 𝑢*#𝐶#(𝑡) + 𝑢1"𝐼"(𝑡) + 𝑢1#𝐼#(𝑡) + 𝑢#𝑅(𝑡)	 (28) 

Total discounted QALY: 

𝑄𝐴𝐿𝑌 =V𝑄(𝑡)
2

!34

 𝑒5&!  Δ𝑡	 (29) 

Cost Calculation: 

 

Cost function at the time step: 

𝐶𝑜𝑠𝑡(𝑡) = 𝐼"(𝑡) 𝐶1" + 𝐼#(𝑡) 𝐶1# + 𝐶)&-6  Δ𝑡	 (30) 

Total Cost: 
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𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡 =V𝐶𝑜𝑠𝑡(𝑡)
2

!34

 𝑒5&!  Δ𝑡	 (31) 

 

 Limitations and Ethical Considerations  

Although the decision support system developed in this study aims to integrate current 

data science techniques into the healthcare system, it has some structural and 

operational limitations. First of all, genomics-based prescribing, which is one of the 

proposed policies, is not yet widely implemented in many countries. In terms of both 

cost and laboratory infrastructure, it is possible that such systems can only be 

implemented in a limited number of health institutions in the short term.  

In addition, the use of machine learning-based decision recommendation systems 

alone in clinical settings poses various risks. In particular, effects such as automation 

bias may carry the risk of clouding physician judgment. Therefore, the systems 

developed must be configured to work under the approval and supervision of a 

physician. The "supporting role" of clinical decision support tools is important in terms 

of ethical responsibility.  

Also, sensitive data types such as patient-based health data, microbiological results 

and genomic information will be used in this study. In the processing of these data, 

personal data security will be prioritized and techniques such as anonymization and 

encryption will be used. The system will be designed in full compliance with national 

and international data protection regulations, especially GDPR (General Data 

Protection Regulation). Ethical consent, data access permissions and stakeholder 

notification processes will be meticulously carried out throughout the project.  

 Overall Evaluation of the Method  

The methodology proposed in this study provides a systematic and data-driven basis 

for combating antibiotic resistance by creating a multi-layered decision support 

structure. By combining simulation techniques, machine learning algorithms and 
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optimization methods, the impact of health policies on the field can be evaluated 

multidimensionally. One of the most important advantages of the model is that it takes 

into account real world constraints and variables. Many theoretically proposed policies 

in the literature have been scenarized and tested in this study, taking into account 

factors such as resource limitations of the health system, patient profile diversity and 

data accessibility. In that regard, the system created serves as both a useful tool that 

may guide decision makers and an academic model.   

 In addition, the model's modular design makes it simple to adapt to various 

governments' health infrastructures, institutional efforts, or new data types. This 

adaptability helps the system's scalability and sustainability and offers a solid basis for 

upcoming studies and the formulation of new policies. 
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 IMPLEMENTATION 

 Markov-Type Cohort Model  

The Markov model designed in the methodology section was modelled using Python. 

Here, the parameters are set to be input by the user, allowing for more comprehensive 

and scalable use. Users will be able to enter the parameters of their models and access 

the policies we have defined within the methodology as defaults. Users select the 

pathogenes, country/AMR category, and policy, or enter their own parameter values. 

The interface send these inputs to the Python model. It returns total costs, QALYs, and 

death counts as output, as additionally ICER values. This allows us to examine the 

model both in the short and long term and according to required population ranges. 

Furthermore, experts and organizations can evaluate their policies within their desired 

scope after entering their own data as parameters. Moreover, users who do not have 

clear data can use Google Scholar and PubMed to search for keywords on the web 

page. If they want to look at organizations that share reports directly, WHO GLASS, 

ECDC AMR, and OECD AMR web pages are available as ready links in the interface. 

Thus, users are supported in knowing where to conduct literature searches and, if they 

have their own data, can input it into the model. 

 

Figure 5.1.1 Prototype Main Page. 
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Figure 5.1.2 Parameter Support. 

 

Figure 5.1.3 Pathogens Parameters. 
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Figure 5.1.4 Policy Parameters. 

 

A sample application has been prepared using the interface. This implementation is 
for:  

• E. coli (third-generation cephalosporin resistant – 3GC-R) 
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5.1.1 General Framework for Implementation:  

Population: 100,000 adults 

Pathology focus: Third-generation cephalosporin-resistant E. coli BSI 

Horizon: 10 years 

Perspective: Health system 

Threshold value (WTP): €30,000/QALY 

The maximum price deemed reasonable to spend for one year of quality life. 

 

Figure 5.1.5 Scenario Results from User Interface. 

 

According to the user interface scenario results presented in Figure 5.1.5 in a 10-year 

simulation for 3GC-R E. coli bacteria, different policy sets were compared with the 

“no intervention” in a cohort of 100,000 people. The results show that the infection 

control package and rapid diagnosis + ML-supported decision systems both reduce 

costs and provide significant QALY gains and reductions in mortality. The infection 

control package provided the highest net benefit of €88.5 million, with approximately 
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€10.35 million in cost savings, 2,605 QALY gains, and 175 deaths prevented, making 

it the most advantageous policy in the model. Risk-based + AWaRe-compliant 

antibiotic management and rapid diagnosis/ML solutions also emerged as dominant, 

that is, both cheaper and more effective. Subscription models and innovation-focused 

R&D policies, on the other hand, require additional costs. If evaluated below the 

€30,000/QALY threshold, they look cost-effective based on ICER values. In other 

words, they are effective but investment-demanding strategies. Users testing the policy 

can evaluate these policies by entering their own threshold values into the model. 

5.1.2 Simulation Implemantation & Results for Different Cases 

In addition to this basic example, the model compared the short-term (1 year) and long-

term (10 years) economic and clinical impacts of various policy packages across 

different Antimicrobial Resistance (AMR) burden categories (Low, Medium, High 

AMR). The analyses show that policy effectiveness increases in direct rate to the level 

of AMR and that Infection Control and Digital Decision Support Systems provide the 

strongest economic benefits in most scenarios. 

5.1.2.1 Annual Results  

In countries with low AMR rates, the most effective short-term policies are traditional 

public health policies. Especially the Infection Control and One Health packages have 

produced net dominant results with approximately €120,000 savings and a €2.3 QALY 

gain. The Risk-based + AWaRe program is also dominant, but its impact is more 

limited. KSS/ML decision support systems, despite an additional cost of €40,000, were 

found to be cost-effective near the threshold due to a QALY gain of 1.4. In contrast, 

high-cost models such as Subscription and Innovation & R&D did not provide a return 

in the short term. When the resistance rate reached the medium AMR level, both 

clinical and economic gains increased significantly. Infection Control/One Health 

packages €380,000 savings and 4.9 QALY and KSS/ML systems €76,000 savings and 

3+ QALY have clearly become dominant. In this category, policies now both save 
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lives and ease the cost burden on the health budget. In countries with a high AMR 

burden, almost every policy provides economic support. The Infection Control 

package produced very strong dominant results, with annual savings of €0.9 million 

and a QALY gain of €12. Even the normally expensive Subscription model has 

become quite cost-effective in the short term, thanks to the significant cost-QALY gain 

from preventing each resistant case under high resistance burden. The Innovation & 

R&D policy was also found to be cost-effective with an ICER value of €16,000. 

5.1.2.2 10 Year Results   

In the long term, all effects grow exponentially. Even at a low AMR level, Infection 

Control saves €1 million and yields a QALY gain of €92, while the KSS/ML system 

achieves strong cost-effectiveness with a QALY gain of €53 despite an additional cost 

of €356,000. At the mid AMR level, gains have reached millions. Infection Control 

saved €3 million, while KSS/ML remained dominant with savings of €664,000 and a 

QALY gain of 115. At this level, even Innovation & R&D, which initially appeared to 

be weak, became reasonable for mid-high-income countries with a QALY gain of 124, 

despite an additional cost of 2.19 million €. Long term results are most impressive at 

the High AMR level. Infection Control provides savings of €8.2 million and a QALY 

gain of 450, while KSS/ML is a very attractive dominant policy with savings of €3.36 

million. Even the subscription model demonstrated very strong cost-effectiveness, 

achieving a QALY gain of €103 at a nearly neutral cost of €27,000 with an ICER of 

approximately €267 per QALY. This shows that even advanced R&D and financing 

models can be economically justified under high resistance burdens. 

5.1.2.3 Sensitivity Analysis  

Sensitivity analyses conducted by defining specific ranges instead of net values for 

parameters showed that as the resistance rate or incidence value increased, the cost-

effectiveness of core policies such as Infection Control, One Health, KSS/ML, and 

Risk-based + AWaRe became even stronger, and their ICERs decreased or became 
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negative. In addition, in high AMR scenarios, even Innovation & R&D policies that 

provide long-term benefits have been observed to become economically rational. 

 Application of the Dynamic Compartment Model (DCM) Simulation 

In this study, the Dynamic Compartment Model (DCM) developed in the methodology 

section has been converted into a user-interactive policy simulation tool. The primary 

objective of this application is to translate the continuous-time epidemiological model 

into a practical, decision-maker-oriented environment, enabling users to test 

antimicrobial resistance (AMR) policies under different epidemiological and 

economic conditions. 

The developed interface combines dynamic infection modeling with cost-effectiveness 

analysis on a single platform. Users can determine all variables themselves, such as 

population size, simulation duration, clinical parameters, health outcomes, policy 

impact, and program cost. This structure offers both researchers and policymakers the 

opportunity to examine short- and long-term outcomes: total infections, resistant 

infection burden, death counts, QALYs, and total costs can be calculated 

simultaneously. 

 

Figure 5.2.1 Prototype Main Page. 
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The interface consists of three main steps: Context, Epidemiology, and Policies. 

In the first step, the user selects the cohort size, time horizon, discount rate, willingness 

to pay (WTP) per QALY, and AMR burden level.  

 
Figure 5.2.2 Scenario Context. 

 

In the second step, the epidemiological and clinical parameters that determine the 

model's dynamics are entered: susceptible and resistant infection incidence, length of 

stay, mortality rates, QALY weights, and costs per infection episode. 
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Figure 5.2.3 Epidemology Section. 

 

 

In the third step, the policy to be tested is defined. The user can either define their own 

policy or select one of the ready-made policy sets commonly used in the literature 
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.  

Figure 5.2.4 Policy Section. 

 

5.2.1 Simulation Implemantation & Results for Different Cases 

5.2.1.1 Annual Results 

When evaluated annually, as the AMR burden increases, the clinical and economic 

impacts of policies become significantly stronger. In settings with low AMR levels, 

Infection Control and One Health interventions yield the most advantageous 

outcomes; they become dominant strategies, providing approximately €120,000 in cost 

savings and a 2-3 QALY gain. Risk-based + AWaRe antibiotic stewardship offers 

more limited improvement, while Digital/ML decision support applications are cost-

effective despite their low additional costs, thanks to an increase of approximately 1.4 

QALYs. At moderate AMR levels, both economic and clinical impacts are further 

amplified; Infection Control and One Health approaches remain among the most 
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effective policies, yielding approximately €380,000 in savings and 5 QALY gains. 

Digital/ML systems also provide significant benefits in this environment, generating 

approximately €76,000 in savings and becoming one of the most powerful 

interventions. At high AMR levels, nearly all policies are economically advantageous. 

In particular, the Infection Control policy demonstrates an extremely strong impact, 

saving approximately €900,000 and gaining 10-12 QALYs, while even higher-cost 

subscription models or innovation/R&D policies become cost-effective thanks to the 

significant reduction in resistant infections. 

5.2.1.2 10 Year Results 

Ten-year simulation results show that the effects of policies increase exponentially 

over time. At low AMR levels, Infection Control policies resulted in total cost savings 

of approximately €1 million and provided over 90 QALY gains, making them the 

dominant strategy in the long term. Digital/ML decision support systems, despite their 

implementation costs, provided over 50 QALY gains, demonstrating high cost-

effectiveness. At medium AMR levels, policy effects become more pronounced; 

Infection Control provides approximately €3 million in long-term savings, while 

Digital/ML systems again deliver dominant results with €664,000 in savings and 115 

QALY gains. Although innovation and R&D-focused policies impose a higher cost 

burden, they still achieve an acceptable level of cost-effectiveness by providing over 

120 QALY gains. The high AMR category is the scope where the strongest effects are 

seen. Infection Control interventions are extremely effective, with savings of 

approximately €8.2 million and a QALY gain of around 450, while Digital/ML 

systems also produce dominant results, saving €3.36 million. Even costly subscription 

models become quite attractive in this environment, generating over 100 QALY gains 

while keeping total costs at a nearly neutral level, suggesting that such investment-

intensive policies may be an economically rational option in countries with high 

resistance burdens. 
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 AMR Forecasting with ML 

Objective: Estimate antimicrobial resistance (AMR) percentages for key pathogens 

across European countries for 2025–2030 and derive a weighted “General AMR” score 

to support policy discussions. 

Input data: Country-level AMR metrics across years with multiple measurement units 

and pathogen categories. 

Steps: 

• Data Cleaning, Normalization, and Feature Engineering 

• Per country–organism combination, trained a polynomial regression model 

(degree 2) on historical `Time` vs. resistance `%`. 

• Generated forecasts for each year from 2025 to 2030. 

• Post-processed predictions by bounding values to the feasible range [0, 100] 

(%). 

5.3.1 Data Cleaning, Normalization, and Feature Engineering 

We performed a number of preliminary procedures in order to analyze the data 

consistently across nations and organisms. In order to focus on combined resistance 

patterns rather than individual cases, we first cleaned up additional information and 

filtered out only the records that demonstrated resistance to multiple drugs. We treated 

time as a flowing variable in our analyses and limited the results to fall between 0% 

and 100% to prevent illogical predictions; thus, through all these cleaning and 

organizing steps, we transformed the messy raw data into a structured format suitable 

for examining trends and making cross-country comparisons. 
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5.3.2 Model Selection 

In this study, the second-degree polynomial regression method was chosen for 

antibiotic resistance predictions because it strikes the best balance between simplicity 

and realism. Unlike methods that assume change occurs at a constant rate, this model 

can successfully capture the slopes of increases or decreases in resistance rates, i.e., 

the fluctuations observed in real life. Given the limited amount of data available, this 

method avoids the risk of error associated with highly complex models, producing 

reliable and understandable results for decision-makers by clearly showing the trend 

without unnecessary deviations. 

5.3.3 How General AMR calculated? 

The most recent, and population-weighted data on pathogen frequency comes from the 
European Centre for Disease Prevention and Control (ECDC), which operates multiple 
surveillance networks. 

Data from the European Antimicrobial Resistance Surveillance Network (EARS-Net) 

provides the 2024 estimated incidence of invasive isolates (e.g., from blood) per 

100,000 population for the EU/EEA. This is a clear measure of general, population-

level frequency: 

E. coli: 73.9 per 100,000 

K. pneumoniae: 25.3 per 100,000 

P. aeruginosa: 11.1 per 100,000 

Acinetobacter spp.: 4.5 per 100,000 

To visualize this discrepancy, Table 5.1 normalizes the EARS-Net incidence data to 

create a "pure frequency" weighting and compares it to the composite score. 
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Table 5.3.1 Normalizing EARS-Net Data. 

Pathogen EARS-Net 2024 Incidence 

(per 100,000) 

Frequency-Normalized 

Weight (EARS-Net) (%) 

E. coli 73.9 64.4% 

K. pneumoniae 25.3 22.0% 

P. aeruginosa 11.1 9.7% 

Acinetobacter spp. 4.5 3.9% 

Total 114.8 100.0% 

  

5.3.4 Forecast Results and Key Findings 

 
Figure 5.3.1 Antimicrobial Resistance Heatmap. 
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This graph (Figure 5.3.1) details the resistance levels of the top 15 countries selected 

based on the “General AMR” rate for 2030 against 4 different bacterial species (E. 

coli, K. pneumoniae, P. aeruginosa, Acinetobacter). 

Yellow represents low resistance (favorable situation), while red and dark red 

represent very high resistance (dangerous situation). 

5.3.4.1 Most At-Risk Countries (Dark Red): 

Greece: Stands out as the most “red” country in the table. Acinetobacter (79.1%), P. 

aeruginosa (65.6%), and K. pneumoniae (65.0%) bacteria are expected to have 

particularly high resistance rates. 

Bulgaria: Has one of the highest resistance rates in the table, at 84.2% against K. 

pneumoniae bacteria. Acinetobacter resistance is also above 50%. 

5.3.4.2 Bacteria-Based Analysis: 

Acinetobacter: Appears to be the most problematic bacterial species. Resistance rates 

are very high (red zone) in many countries, including Croatia (77.1%), Italy (66.1%), 

Latvia (62.9%), and Romania (61.0%). 

E. coli: It appears more “controllable” compared to other bacteria in the table. Most 

countries are yellow (low resistance). Only Latvia (21.2%) and Poland (12.8%) have 

relatively high values. 

5.3.4.3 Countries in a Better Position: 

United Kingdom, Spain, Czechia: They are generally yellow, meaning their resistance 

rates are estimated to be lower. However, Spain and the United Kingdom show a 

medium level of risk for K. pneumoniae. 
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Figure 5.3.2 General AMR Rates. 

 

This graph (Figure 5.3.2) ranks the top 20 countries based on the projected “General 

AMR” rates for 2030. It serves as a summary of the first visual but covers more 

countries. 

Bulgaria and Greece stand at the top of the list with estimated overall resistance rates 

exceeding 30%, indicating a very high probability of antibiotic treatment failure, 

followed closely by Cyprus and Croatia. As the rankings progress downward, 

resistance rates drop rapidly, placing Poland, Latvia, Romania, and Lithuania in the 

medium-risk group. Meanwhile, Western European countries such as Italy, Spain, and 

the United Kingdom occupy the lower end of the list, with Hungary, the Netherlands, 

and Belgium specifically projected to have the lowest resistance estimates. 
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Figure 5.3.3 AMR Trends. 

 

Figure 5.3.4 Yearly Details of Bacterias. 

 

These projections (Figure 5.3.3 – Figure 5.3.4) provide a specific forecast for 

antimicrobial resistance in Bulgaria between 2025 and 2030, highlighting a mix of 

improving and worsening trends. The data predicts a positive decline in Acinetobacter 

(falling from approximately 77% to 56%) and E. coli resistance, while a worrying 

increase is seen in K. pneumoniae resistance, which is expected to rise sharply from 

68.14% to 84.24%. Interestingly, despite these variable changes among individual 

bacteria, Bulgaria's overall “General AMR” level is expected to remain remarkably 

stable at around 31% throughout the five-year period. 
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 Generating and Evaluating Design Solution Alternatives 

Three levels of solution alternatives were implemented and evaluated in this study: 

machine learning prediction models, policy packages, and simulation models. Two 

distinct structures that represented the same AMR issue were created on the simulation 

side. A dynamic compartment model that captures transmission dynamics over time 

and a Markov-type cohort model that prioritizes cost-effectiveness were developed. 

As a result, the decision-maker is given two different analytical frameworks that 

examine the same set of policies from the perspectives of epidemiological dynamics 

and economic burden. For comparison with the current situation scenario, a number of 

different policy alternatives have been defined in both models, including Risk-based 

+ AWaRe, Infection Control, One Health, Digital/ML decision support, Subscription, 

and Innovation & R&D. These policies have been compared under various AMR 

burden, time horizon, and willingness-to-pay (WTP) thresholds in terms of total cost, 

quality-adjusted life years (QALY), deaths, incremental cost-effectiveness ratio 

(ICER), and net monetary benefit indicators.  The second-degree polynomial 

regression method was chosen as the best prediction model based on data quantity, 

error values, and interpretability criteria after various predictive approaches were 

tested on the machine learning side to forecast countries' future resistance rates. The 

overall AMR score and policy prioritization were then determined using the model's 

output. As a result, the design methodically generated both the policy and prediction 

components and the simulation architecture. Then, alternative scenarios were 

compared using various performance metrics. 



 

67 

 CONCLUSION AND RECOMMENDATIONS 

Brief Summary of the Design and Development Steps 

In this study, a data-driven Decision Support System was designed and implemented 

to support decision-makers in the fight against antibiotic resistance. The main 

objective of the study is to comprehensively address antibiotic use, resistance rates, 

patient and prescription information, antibiogram data, and epidemiological 

parameters based on the literature, and to test different policy alternatives. It also 

aims to systematically evaluate the health and economic impacts of these candidate 

policies. 

The design process began with problem definition, determination of the system's 

scope, and stakeholder analysis. At this stage, the clinical and economic burden of 

AMR on the healthcare system was assessed, and the types of outputs or 

comparisons needed by decision-makers were clarified. Subsequently, alternative 

policies such as infection control, risk-based prescribing, WHO AWaRe-based 

policies, rapid diagnostic systems, and digital/ML-supported decision mechanisms 

were defined based on the literature. 

In the next step, two complementary modelling approaches were used to 

quantitatively assess the effects of these policies. First, a Markov-based cohort model 

was used to calculate costs, quality-adjusted life years (QALYs), averted deaths, 

incremental cost-effectiveness ratios (ICERs), and net monetary benefits (NMB) at 

different time horizons.  The other model, the Dynamic Compartment Model (DCM), 

modelled the evolution of susceptible and resistant bacterial populations over time. 

The processes of infection spread, and resistance selection were represented. 

Following the modelling phase, the epidemiological and economic outputs obtained 

have been integrated into the decision support section. Thanks to the interface 

prototype developed in this layer, users can define parameters such as population 
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size, time horizon, discount rate and willingness to pay (WTP) and compare the 

results of the selected policy alternatives. Thus, the system demonstrates which 

policies are dominant or cost-effective under different scenarios. 

Finally, the findings obtained during the implementation phase revealed that 

infection control and ML-supported policy packages provided health gains and 

reduced total costs in many scenarios. These results demonstrate that the developed 

decision support system can provide evidence-based, comparative, and actionable 

policy assessments in the fight against AMR. 

 Applicability of the Design and Managerial Contributions 

The data-driven decision support system developed within the scope of this study has 

been designed to be used in strategic decision-making processes in the fight against 

antibiotic resistance. The system offers an applicable and scalable structure in different 

country, region and institutional contexts, thanks to the fact that the data requirements 

largely consist of antibiotic consumption data, resistance rates, patient profiles and 

clinical cost information already produced within healthcare systems. 

From a management perspective, the developed system provides significant value by 

offering a comparative analysis of alternative policy packages rather than presenting 

only a single policy outcome. In particular, the joint reporting of indicators such as 

ICER, net monetary benefit (NMB), QALY gain, and number of deaths prevented 

enables managers to make more informed, predictable choices, considering budget 

constraints and willingness-to-pay (WTP) thresholds. This allows for evidence-based 

resource allocation and performance evaluation. 

The system's user-interactive interface allows policy and health managers to quickly 

evaluate different scenarios. They can change factors such as population size, time 

horizon, epidemiological characteristics, and policy scope on a scenario basis. This 

ensures that the system is not just an academic model but a management tool that can 

be applied to real decision-making processes. 
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However, the combined use of the Markov model and the Dynamic Compartment 

Model offers a significant advantage in terms of decision-making. Evaluating long-

term cost-effectiveness outcomes alongside short- and medium-term epidemiological 

dynamics enables managers to see the effects of both rapidly implementable policies 

and long-term sustainable strategies simultaneously.  

 

In summary, this study evaluates interventions for antibiotic resistance not only in 

terms of their effectiveness but also under specific resource constraints and within a 

specific time frame. Thus, the developed framework contributes to the creation of a 

more rational, transparent, and accountable decision-making mechanism in the design 

and implementation of health policies. 

 Assessment of Environmental, Social, and Economic Impacts of the Design 

Environmental Impacts 

Antibiotic resistance is not just a clinical problem; it is also a systemic problem with 

environmental dimensions. The excessive and inappropriate use of antibiotics can 

accelerate the spread of resistant microorganisms through wastewater and 

environmental residues. This process not only affects human health but also directly 

impacts animal health through livestock and natural ecosystems. Antibiotics used in 

livestock farming can pollute the environment and facilitate the spread of resistance 

genes among animals and from animals to humans. 

The decision support system developed in this study aims to indirectly reduce the 

environmental pressure of antibiotic resistance by promoting policy packages that 

encourage reduced antibiotic use and more targeted prescribing approaches, thereby 

reducing both human and animal-derived antibiotic consumption. Infection control 

limits unnecessary antibiotic use and enables a reduction in the amount of antibiotics 

released into the environment. In this respect, the design is consistent with the ‘One 
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Health’ approach and can be considered a complementary tool for limiting the spread 

of resistance genes within ecosystems in the long term. 

6.2.1 Social Impacts 

Antibiotic resistance directly affects not only health indicators at the societal level, but 

also individuals' daily lives and their perception of the healthcare system. The 

prolongation of treatment processes due to resistant infections and the failure to 

achieve the desired outcome in some cases lead to both increased mortality rates and 

longer hospital stays. This situation can have particularly severe consequences for 

chronically ill patients, the elderly, and socioeconomically disadvantaged groups. 

On the other hand, repeated treatments and uncertainties in the recovery process place 

a significant psychological and financial burden on patients and their families. The 

failure to achieve the expected benefits from treatment can, over time, lead to a decline 

in public confidence in the healthcare system. In this context, antibiotic resistance is 

considered not only a clinical problem but also a multidimensional social issue that 

affects individuals' quality of life, social welfare, and confidence in healthcare 

services. 

In this context, antibiotic resistance emerges as a significant public health issue, not 

only due to its clinical consequences but also because of its impact on individuals' 

social well-being and society's perception of health. Furthermore, the scenario-based 

structure of the system allows for the examination of policy performance under 

different population groups and resistance levels. This ensures that decision-makers 

consider not only average outcomes but also the effects on high-risk or disadvantaged 

groups. Therefore, the design offers an analytical framework that can contribute to the 

development of more equitable and inclusive health policies. 
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6.2.2 Economic Impacts 

AMR poses a significant burden on public budgets through increased costs on 

healthcare systems. The need for more expensive drugs to treat resistant infections, 

longer hospital stays, and additional diagnostic/treatment processes increase per capita 

healthcare expenditures and cause healthcare budgets to be depleted more quickly. 

This situation makes the long-term sustainability of healthcare systems difficult, 

especially in countries with limited resources. 

Furthermore, the rise in antibiotic resistance has indirect but lasting effects on the 

national economy through labour losses and reduced productivity. The temporary or 

permanent withdrawal of the working-age population from the workforce due to 

illness, premature deaths, and long-term health problems negatively impact total 

production and economic growth. 

The system developed in this study contributes to the more rational and efficient use 

of public resources by evaluating policy alternatives that can be implemented in the 

fight against antibiotic resistance in terms of cost and effectiveness.  

 Ethical Evaluation of the Design 

Policies aimed at combating antibiotic resistance should be evaluated not only in terms 

of their technical effectiveness but also in terms of their long-term effects on society 

and the ethical responsibilities inherent in decision-making processes. The decision 

support system developed in this study enables more ethically conscious decisions to 

be made by making the outcomes of different policy options visible and comparable.  

From the justice principle perspective, the consequences of antibiotic resistance are 

not distributed equally within society. Resistant infections often affect groups with 

limited access to healthcare or chronic diseases more severely. The developed decision 

support system allows for the analysis of policy impacts under different scenarios, 

enabling resource allocation to consider not only average outcomes but also the effects 

on different segments of society. This approach supports more equitable and needs-

based decision-making in healthcare. 
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When evaluated within the framework of duty ethics, the fundamental responsibility 

of health authorities is to protect public health and ensure the continued availability of 

effective treatment options in the future. Limiting the excessive and inappropriate use 

of antibiotics is an important part of this responsibility.  

The system supports decision-makers make decisions that set long-term social 

obligations ahead of immediate profits.  

  

From an economic point of view, the system makes it possible to identify interventions 

that, given limited resources, will result in the greatest overall health benefit. Decisions 

intended to maximize health gains throughout society are supported by assessments 

based on QALY gains, prevented deaths, and cost-effectiveness indicators. 

From a virtue ethics perspective, transparency, prudence and accountability come to 

the fore. The developed system enables reasoned decisions to be made instead of 

intuitive ones by presenting policy outcomes in a clear and traceable manner. This 

approach allows decision-makers to take an ethical stance that encompasses the 

reasoning and decision-making process in addition to the chosen ultimate outcomes.    

Overall, this study shows that a system can offer a thorough and organized framework 

for assessing antimicrobial resistance policies from social, ethical, clinical, economic, 

and environmental viewpoints. The suggested system facilitates more transparent, 

consistent, and accountable decision-making under uncertainty by combining 

epidemiological modeling with cost-effectiveness analysis and scenario-based 

evaluation. The results show that successful AMR interventions should be evaluated 

in terms of their wider societal effects and ethical ramifications in addition to health 

outcomes and expenses. In this way, the suggested framework aids in the creation of 

health policies that are more ethically sound, evidence-based, and sustainable in the 

fight against antibiotic resistance. 
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